## 石灰性土壤中氮素损失的初步研究

虞锁富 赵美芝

(中国科学院南京土壤研究所)

在石灰性土壤上施用硝化抑制剂,有的地方有效, 有的无效,这可能是因为氮素损失的途径 有 各 种 各 样。根据现有资料,土壤中氮素损失除了随水流失外, 还有下列几方面: (1) 因铵态氯受 pH、CaCO3等的 影响而引起氨的挥发; (2) NO-2 与R-NH2产生的 Van Slyke 反应或与 NH + 产生类似 的反应而引起 氯素的损失(在好气条件下);(3)由于反硝化作用 而引起的N2、N2O、NO等气态氮的损失。第一种氮素 损失是化学反应,与生物过程无关,因此不受硝化抑制 剂的影响。根据Man和兰梦九等的报告[1、2]。氮肥施 到石灰性土壤中后,除了被作物吸收和淋失外,其余大 部分以氨态挥发损失掉。早期的研究者认为 NH3的 挥发只是由于CaCOa提高了土壤pH所致,然而实际 情况比较复杂,例如在施过石灰的草地上施用硫酸铵 时, NH<sub>3</sub> 的挥发损失要比硝酸铵高得多[3]。因在石 灰性土壤中铵盐的阴离子和NH₄+分别与 CaCO₃中 的Ca++和 CO3 形成Ca的化合物和化学上不稳定的  $(NH_4)_2CO_3$ 。所形成的 Ca 的化合物的溶解度愈小, 生成的(NH<sub>4</sub>)<sub>2</sub>CO<sub>3</sub>量就愈多,也愈加剧NH<sub>3</sub>的挥 发,是一种化学机理[4、5]。土壤质地对 NH3 的挥发 也有一定的影响, 质地轻的土壤中 NH。的挥发量要 比粘粒含量高者大得多[6]。NH。的挥发量还与土壤 的阳离子交换量成反相关[7],土壤中的含水量对NH。 的挥发影响也很大。有人认为水分能助长 NH。的挥

发[8、9、11], 但也有人认为,增加土壤中的含水量可增 高颗粒表面的吸附能力,因而降低NH<sub>3</sub>的损失[10]。

本文就土壤含水量、质地以及CaCO<sub>3</sub> 对土 壤 中 NH<sub>3</sub>挥发的影响作一初步分析。此外,还拟探讨亚硝 态氮的化学分解而引起气态氮损失的可能性。

#### 材料与方法

试验采用薄层培育,以便在好气条件下进行。具 体方法是, 将土壤放入直径12厘米, 高6厘米的结晶 皿内,其中放置装有15毫升 1NH2SO4的小烧杯,以吸 收土壤中挥发出来的 NH<sub>3</sub>。结晶皿口用薄膜密封,在 30°C 恒温箱中培育30天。培育过程中土壤Eh均高于 400毫伏,排除反硝化作用的可能性。每种土壤采用三 种含水量,即饱和含水量的50%、85%和100%。每 处理加硫酸铵相当于每100克土壤24.04毫克N,并与 土壤充分混匀,重复三次;另有对照,重复二次。土壤 中的 NH<sub>4</sub>-N 和 NO<sub>3</sub>-N 用2NKC1 溶液提取(土:液 为1:25), 用氨气电极测定NH4-N。另一份提取液用 Devarda 合金将 NO<sub>3</sub>-N 还原为 NH<sub>4</sub>-N, 用氨气电 极测定,两次测定值之差即为 NO<sub>3</sub>-N 的含量。全観 的测定用开氏法,未加还原剂,因此不包括硝态氮。 分析结果的相对误差大多低于10%,但部分标本可达 30%,少数更高。

表 1

供试土壤的一般性质

| 样 | 号        | 地    | 点     | pH (H <sub>2</sub> O) | 行机质<br>(%) | CaCO <sub>3</sub> (%) | 物 理 性 精 粉*<br>(%) |
|---|----------|------|-------|-----------------------|------------|-----------------------|-------------------|
|   |          | 济宁   | 农科所   | 7.8                   | 1,11       | 0.12                  | 29.8              |
| 2 | <b>:</b> | 济宁   | * 蒋 屯 | 8,3                   | 1,21       | 0.38                  | 39,9              |
| 3 | }        | 准安   | 城 东   | 8.7                   | 0.97       | 7.91                  | 17.2              |
| 4 |          | 准安   | 盛庄    | 8.4                   | 1.84       | 9.24                  | 29.5              |
| 5 |          | 淮安流均 |       | 8.4                   | 2.25       | 9,66                  | 55.7              |

<sup>\*</sup> 本所土壤地型室物理分析组测定

| 样 号  | 地 | 点   | 50%        |      | 85% |      | 100 % |      |      |
|------|---|-----|------------|------|-----|------|-------|------|------|
|      | 7 | AS  | λ4.        | 加硫酸铵 | 对照  | 加硫酸铵 | 对照    | 加硫酸铵 | 对 照  |
|      | 1 | 济宁农 | 科所         | 0.01 | 0   | 0.35 | 0.01  | 2.49 | 2.15 |
| :    | 2 | 济宁。 | <b>梅</b> 电 | 0.09 | 0   | 0.02 | 0.02  | 1.04 | 2.54 |
| ;    | 3 | 淮安! | 城东         | 0.47 | 0   | 0.13 | 0.01  | 2.29 | 2.18 |
|      | 4 | 淮安县 | 盛 庄        | 0.17 | 0   | 0.03 | 0.05  | 0.80 | 0.65 |
| . پر | 5 | 推安证 | 流 均        | 0.12 | 0   | 0.01 | 0.01  | 2.20 | 2.59 |

#### 试验结果和讨论

#### (一) 氨的挥发问题

(二)**亚硝态氮的化**学分解而引起氮损失的可能性 的估计

我们根据下列公式计算了添加氮素的 表 观 回 收 事。

表观回收率(%) = 
$$\frac{\Sigma_1 - \Sigma_2}{W} \times 100$$

式中  $\Sigma_1$  和  $\Sigma_2$  分别为处理土壤和对照土壤的全 **氮、** $NO_3$ -N、 $NH_4$ -N的总和,W为添加的**氮**量。结果 **列于**表 4 。



图 1 NH3挥发与CaCO3量/粘粒量比值的关系

从表 4 可见,表观回收率一般在10—96%,也即加入的硫酸铵有 4—90% 遭到损失。由于培育过程中土壤的Eh为 400—500 毫伏,所以产生反硝化作用的可能性是不大的。而最有可能性的是亚硝态氮的化学分解而引起氮的损失。这是因为土壤 pH 值较高,有利于NO<sub>2</sub><sup>-1</sup>的积累。这样,一方面可能因 NO<sub>2</sub><sup>-1</sup> 化学

表3

土 壤 中 氨 的 挥 发 强 度\*

| 样 号 | R. | 地    | 点 | 50% |   |     | 85% |   |    |   | 100 % |     |      |     |
|-----|----|------|---|-----|---|-----|-----|---|----|---|-------|-----|------|-----|
|     | .9 | AS   |   | 处   | 理 | 对 照 | 处   | 理 | 水  | 揺 | 处     | 理   | 对    | 摡   |
| 1   |    | 济宁农科 | 所 | 0.  | 1 | 0   | 9.2 |   | 0. | 4 | 22    | . 7 | 50   | .2  |
| 2   |    | 济宁蒋  | 屯 | 0.  | 6 | 0   | 0.4 | Į | 0, | 6 | 8     | . 2 | 57   | .3  |
| 3   |    | 淮安城  | 东 | 2,  | 4 | 0   | 3.1 |   | 0, | 4 | 23    | . 8 | 90   | .4  |
| 4   |    | 淮安盛  | 庄 | 1.  | 1 | 0   | 0.8 | ; | 0, | 9 | 9     | . 8 | . 79 | .3  |
| 5   |    | 淮安流  | 均 | 0.  | 8 | e   | 0.2 |   | 0. | 2 | 16    | .2  | 88   | 3.7 |

\* **复挥发**强度 = NH<sub>3</sub> - N (NH<sub>4</sub> - N) + (NO<sub>2</sub> - N) + (NO<sub>2</sub> - N) × 100

| 拌 | 무 | 地   | 点   | 50% | 85%  | 100 % |
|---|---|-----|-----|-----|------|-------|
| 1 |   | 济宁  | 农科所 | 96  | 88   | 77    |
| 2 |   | 济宁  | 蒋 电 | 85  | 10   | 76    |
| 3 |   | 淮安  | 城东  | 113 | 45   | 67    |
| 4 |   | 淮 安 | 盛庄  | 95  | - 16 | 35    |
| 5 |   | 推安  | 流均  | 75  | 21   | 82    |

不稳定性而分解,另一方面则因 $NO_2^-$ 和  $NH_4^+$ 同时存在时,有可能发生如下的反应而引起氦的损失。

 $NO_2^- + NH_4^+ \rightarrow N_2 \uparrow + 2 H_2O$ 

在好气的培育条件下,土壤中铵态氮硝化的最终产物为 $NO_3$ -N,如在硝化过程中, $NO_2$ -和  $NH_4$ +因上述反应而损失时,势必影响土壤中  $NO_3$ -N 的形成和积累,损失量越大, $NO_3$ -N 积累量越小。测定结

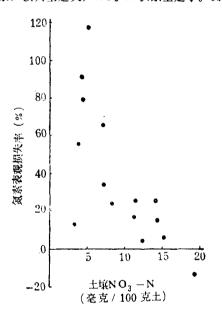



图 2 氮素表观损失率与土壤NO<sub>3</sub>-N含量的关系

果也反映了这一负相关。如图 2 所示,添加到土壤中  $NH_4$ -N的表观损失率(为100减去表 4 中的表观回收率)与土壤  $NO_3$ -N含量呈现较好的负相关性(Y=0.704, P=0.01)。因此,我们认为本试验中,亚硝态氮的化学分解存在是有可能性的。至于这种反应发生的土壤问题尚待进一步研究。

#### 参考文献

- (1) Man, J.P., and Bares, T. W., J. Agri. Sci. 4: 209-314, 1951.
- [2] 兰梦九, 土壤学报, 2: 91-96页,1953。
- (3) Volk, G.M., J. Agric. Food Chem., 9, 280— 283, 1961.
- (4) Ferman, G. I., and Hunf, D. M., Soil Sci. Soc. Amer. Proc., 28,667-672, 1964.
- [5] Fenn, L. B., and Kissel, D. E., Soil Sci. Soc. Amer. Proc., 37,855-859,1973.
- (6) Wahhab, A. M., Soi. Sci., 84,249-255, 1957.
- (7) Fenn, L., and Kissel, D. E., J. Soil Sci. Soc. Amer., 40,394-398,1976.
- [8] Jackson, M.L., and Chang, S. C., J. Agrom., 39:623-633, 1947.
- (9) Fenn, L. B., and Kissel, D.E., Soil Sci. Soc, Amer. Proc., 39: 366-368, 1975.
- (103 Brown, J. M., and Barthlomew, W. V., Soil Sci. Soc. Amer. Proc., 37: 160-164,1973.
- [11] Stanley, F, A., and Smith, G.E., Soil Sci Soc. Amer. Proc., 20:557-561, 1956.

### 麦肥间种

熊家宝 陈万峰

(黑龙江省安达县农业技术推广站)

为了解决种植绿肥与粮争地的矛盾。我们于1973 --1976年在试验站和中本、文化等公社进行了麦肥间 种试验和多点大面积示范,取得了显著效果。

"麦肥间种",是在7.5厘米窄行平播小麦一年一作

# 地肥粮高

刘焕一

(黑龙江省绥化地区农科所安达农业试验站)

的基础上,改为宽行播小麦间种草木樨,一年内一块地上收一季粮食和一季绿肥。种法是:小麦采取30厘米 双条或45厘米四条平播,在小麦的大行中间种草木樨。小麦收获后,草木樨长到1米高时(8月中旬至9月