开发矿棉为人工培养土的综合报告

周加顺

(福建省漳州市农技站 漳州 363000)

摘 要 试验结果表明:以矿棉为主原料,配合一定量的泥炭土或污泥堆肥,作为园艺、温室花卉培养土,其效果优于当地培养土。矿棉与泥炭土最佳配比为1:0.3~1(容积比),矿棉与污泥堆肥最佳配比为1:0.5~0.75(重量比)。

关键词 矿棉、泥炭土、污泥堆肥、人工培养土。

矿棉品质均一稳定,不带病虫原,质轻,结构疏松,通气性好,与污泥堆肥、泥炭土等亲和性良好,易设计改良为理想培养料。利用冶炼厂大量矿渣,在炼取铁镍后的电炉出渣处承装高速滚轴和吹风机(冷却)设备就能使炉渣纤维化,不仅可批量生产,成本低,而且化废为利。国外对类似此基质早就有开发研究,1970年丹麦开始用玄武岩溶解加工成绵状(称岩石纤维)与泥炭土配合用作温室花卉栽培土,随后在欧洲推广。1982年岩石纤维栽培引入日本,从铁矿渣制造岩石纤维提取液作无土栽培[1]。1993年~1995年作者在日本做了本课题后,矿棉作为一种新的培养料在日本园艺、温室花卉培植上得到广泛应用。我国人地矛盾尖锐,花卉及高值农业迅猛发展;铁镍冶炼矿渣量大处理难,开发为培养土减轻园艺栽培对优良土壤的需求压力、丰富培养料和环境保护都有现实和长远意义。笔者根据在日本所做和最近进一步试验的两次资料综合成本报告,为我国开发矿棉为园艺、温室花卉的培养土提供依据。

1 材料与方法

1.1 材料

矿棉(スラグゥール slag wool) :是红土铁矿石和氧化铝等经电炉冶炼铁镍之后 ,将 1500 熔融炉渣浇注在高速转轴表面 ,利用离心力将熔渣摔出并快速冷却而纤化 ,呈白色绵状物。主要成分:SiO $_2$ 45.16% , MgO 19.88% , CaO 15.9% , AI $_2$ O $_3$ 1.5% , Fe $_2$ O $_5$ 2.5% , 及少量 Mn 等 $^{[2]}$ 。pH7.6 , 电导率 0.54ms/cm , CEC : 0。平均纤维径 4.8ì m , 比表面积 $2\,\mathrm{m}^2$ /g , 孔隙率 90% 以上 , 吸水性强 , 化学稳定性高 $^{[3]}$ 。

优质泥炭土(ピートモス下简称泥炭土): 近似于腐叶土的特性, pH4.0~5.0, 阳离子交換量大,保肥力强。污泥堆肥(污泥コンポント): 有机质 24.84%, 20.0.82%, 20.0

1.2 试验方法

本课题采用温室盆栽试验,共设3个试验。

1.2.1 试验方案设计

处理	I (CK)			IV	V	备 注
试验 1	矿棉	矿棉:泥炭土	矿棉:泥炭土	上层矿棉	红玉土:泥炭土:蛭石	V 为日本当地盆栽材料
		1:0.3	1:1	下层石砾	2:1:1	容积比
试验 2	矿棉	1:0.5	1:1	1:2	1:3	矿棉:泥炭土(容积比)
试验 3	矿棉	1:0.25	1:0.5	1:0.75	1:1	矿棉:污泥堆肥(重量比)
						每钵材料总重 200g

表 1 基质处理水平(3重复)

表 2 供试植物与施肥

试验 1	非洲兰花	锦紫苏	翠菊	金盏草	每钵施 6g 长效复合肥甲作基肥
试验 2	非洲兰花	锦紫苏	藏红花	醋浆草	每钵施 6g 长效复合肥乙作基肥
试验 3	翠 菊	金盏草	百 合	小月季	施肥同试验 2

注: 肥甲: N、P₂O₅、K₂O 各 12%、Mn 0.1%、B 0.05%,日文商品名为ートボール,中文音译为冶托波卤。 肥乙: N、K₂O 各 13%、P₂O₅11.0%、Mg 2.0%、Mn 0.01%、B 0.06%,日文商品名为スオタグーゲ,中文音译为喔塔沽给。 试验 3 小月季分两组试验,其中一组做不施肥对比。

1.3 测定方法

培养料 27 h 内 6 次水提取液测电导率和 pH , 求平均值。电导率用电导仪法测定 $^{[5]}$ 。pH 用电极法测定 $^{[5]}$ 。阳离子交换量用中性醋酸铵法测定 $^{[5]}$ 。最大容水量用 105 烘干法:材料吸水后用 105 烘干;吸水后材料重 - 烘干后材料重=材料所含有的水分量;材料所含有的水分量÷烘干后材料重量×100% = 材料最大容水量 $^{[6]}$ 。

2 结果分析

2.1 试验 1 结果分析

表 3 可见,各处理生物量优序依次为 > > 。 矿棉:泥炭土为 1:0.3 之 区表现最好,早生快发,茁壮生长,根系发达,其生物量是纯矿棉区的 113.2% ~ 118.1%,优于当

	れる 成型・日文珪伝成化月土物量、モザギ、pii 直												
处	非洲兰花		锦紫苏			翠菊	金	盏菊	电导率	pH 值			
理	生物量	与I比	生物量	与I比	生物量	与I比	生物量	与I比	(ms/cm)				
	(g)	%	(g)	%	(g)	%	(g)	%					
	81.6	100	16.9	100	15.2	100	9.1	100	0.54	7.6			
	96.4	118.1	19.4	114.8	17.4	114.5	10.3	113.2	1.18	6.6			
	93.9	115.1	19.0	112.4	16.7	109.9	9.9	108.8	1.82	5.9			
	44.3	54.3	8.4	49.7	8.3	54.6	4.3	47.3	0.53	7.4			
	74.5	91.3	15.3	90.5	15.0	98.7	8.9	97.8	0.83	4.6			

表 3 试验 1 各处理供试花卉生物量、电导率、pH 值

地培养土 区。该处理电导率较高,1.18ms/cm(仅次于),pH 6.6。 区植物表现次于

区,该处理虽电导率最高(1.82ms/cm),但 pH 5.9,偏酸。纯矿棉的 区返青后 20 天内植物 生长都基本正常,随后由于养分流失,生长逐渐减缓,其生物量居于 5 个处理的第 3 位。矿棉区电导率低,0.54ms/cm,pH7.6。IV 表现不佳,由于不持阳离子交换量的矿棉置于石砾之上,使养分更易流失,植物生长不良。

2.2 试验 2 结果分析

花卉生育情况(表 4)显示,5 个处理生物量依次为 > > > 。 矿棉与泥炭土比例为1:0.5之 区最佳,1:1之 区次之,其结果与试验1基本一致。矿棉与泥炭土比例若超过1:2,各种花卉生长均受抑制。培养料电导率 V, 2.22、 ,1.97、 ,1.81、 ,1.24、

,0.39ms/cm。可见,随着泥炭土比例的增加,电导率相应提高,表明培养料保储养分的能力提高。导致第、区作物生长不良的原因,可能与土壤持水量过高而影响根系生长有关。

处	非洲兰花		锦紫苏		翠翠	菊	金	盏菊	电导率	pН
理	生物量	与I比	生物量	与I比	生物量	与I比	生物量	与I比	(ms/cm)	值
<u></u>	(g)	%	(g)	%	(g)	%	(g)	%		
(CK)	82.5	100	17.1	100	11.3	100	26.2		0.39	6.95
	97.6	118.3	20.8	121.6	14.1	124.8	29.7	113.4	1.24	6.3
	93.5	113.3	19.2	112.3	13.2	116.8	28.2	107.6	1.81	5.8
	89	107.9	17.9	104.7	10.9	96.5	24.7	94.3	1.97	5.6
	55.3	67	13.7	80.1	7.8	69	17.1	65.3	2.22	5.3

表 4 试验 2 各处理供试花卉生物量、电导率、pH 值

2.3 试验 3 结果分析

表 5 可见, 4 种花卉各处理生物量依次为 > > > 。 矿棉与污泥堆肥比例为 1: 0.5 最佳, 1: 0.75 次之。

	百合		翠菊		金盏草			1	小月季		CEC			最大
处							施	施肥		无 肥		电导率 (mS/	pH	容水
理	生物	与I	cmol/ kg	cm)	值	量								
	量(g)	比%	K ₅	CIII)		%								
I (CK)	8.2	100	15.3	100	9.4	100	8.4	100	1.3	100	0	0.38	6.9	535.5
II	9.6	117.1	17.3	113.1	11.9	126.6	12.0	142.9	4.4	338.4	2.42	1.12	7.1	460.8
III	15.2	185.4	21.8	142.5	13.5	143.6	16.0	190.5	6.5	500	4.63	1.82	7.3	387.4
IV	14.8	180.5	21.3	139.2	12.6	134.0	16.2	192.9	6.5	500	7.44	2.12	7.4	334.3
V	12.0	146.3	17.8	116.4	9.1	96.8	12.8	152.4	5.4	415.4	9.22	2.47	7.6	300

表 5 试验 3 各处理供试花卉生物量及主要理化性状

生物量与电导率的相关系数 $0.53 \sim 0.86$, $F_{1.204} < F_{0.05} = 19.00$,差异不显著。生物量与 CEC 的相关系数为 $0.46 \sim 0.78$, $F_{3.43} < F_{0.05} = 19.00$,差异不显著。而从表中可见,矿棉单用之 I 区因电导率低(0.38 ms/cm),培养料溶液离子量不足而影响了植物生育(生物量低); II、III、IV 区电导率较适中植物生育良好; 区电导率偏高(盐分偏高)则出现了阻碍植物生育现象。说明电导率在一定范围内(大致在 $0.5 \sim 2.0 \text{ms/cm}$ 之间)较适于植物生育。阳离子交换量也

表现出与此相类似的规律。 、 两区生物量较高,其最大容水量 334.3% 和 387.4%,居于 5 个处理的中间,水气热较另 3 个处理区协调,利于根系活动植物生长发育。 区最大容水量最高 (535.5%),水热气协调较差,CEC 是 0,养分流失,对植物生长较不利,生物量最少。

无施肥试验矿棉单用之 区,小月季生物量仅 1.3g,是施肥之 区(配料同)小月季生物量的 15.5%。无肥试验 、 、 区生物量分别是施肥 I 区的 36.27%、40.63%、40.12% 和 42.19%。无肥试验结果表明:矿棉须改良才宜作培养土,与污泥堆肥合成虽有良好生育表现和肥力指数,但也要适当施肥以补充养分来满足植物的生育需要。

以上试验也映证:高温下产生的碱性、大纤维径、多 SiO_2 分子的矿棉,没有产生同晶替代永久电荷,也就缺乏保蓄有效养分的能力。

另外,矿棉含镁和钙较多,二者有一定的拮抗作用,会互相抑制植物对其吸收,因而能一定程度互相消除过剩的有害作用。

3 讨论

- (1)本文"摘要"指出的矿棉与泥炭土、污泥堆肥的最佳配比,可据栽培花卉的不同适当调整。
- (2)以上制成的培养土,以施长效复合颗粒肥为佳;花卉生育过程中可视生育期的需要酌情配施适量的速效养分。
- (3) 因矿棉培养土的吸水性强,过量灌水可能影响根系呼吸而烂根,应防灌水过多,浇灌水量和次数要据天气和植物种类而适宜浇管,一般以保持湿润状态较佳。
- (4)理化性状分析是种植前采集的培养料,施用长效复合肥后养分的持续释放是否弥补了培养土保肥力的不足,有待于进一步研究。

参考文献

- 1 しぶ谷正夫· 岩石纤维制品栽培系统的实用化· 农林水产技术研究杂志 8 巷 5 号, 1985, 27
- 2 日本太平洋金属株式会社八户制造所. 93. 6
- 3 日本荏原综合研究所. 苏庆泉博士. 研究员. 94.3
- 4 日本ケリーン绿化株式会社宮城肥料检查所 93.9
- 5 南京农业大学主编. 土壤农化分析. 北京: 农业出版社, 1992
- 6 矢木博. 土壤检定与肥料试验. 日本: 博友社. 1973