土壤和沉积物中重金属形态分析^①

黄光明1, 周康民1, 汤志云1, 王亚平2, 高孝礼1, 肖 灵1, 江 冶1

(1 江苏省地质调查研究院,南京 210018; 2 国家地质实验测试中心,北京 100037)

摘 要: 介绍了一种土壤和沉积物中重金属形态分析方法,将重金属的形态分为水溶态、弱酸态、可还原态、可氧化态和 残渣态,用水提取水溶态,0.11 mol/L 的醋酸提取弱酸态,0.5 mol/L 的盐酸羟胺提取可还原态,过氧化氢和 1.0 mol/L 的醋酸铵 提取可氧化态,盐酸-硝酸-氢氟酸-高氯酸提取残渣态。方法适用于 Cu、Pb、Zn、Cd、Cr、Co、Mn、Mo、As、Sb、Ni 等 11 种重金属元素的形态分析研究,检出限在 0.001~1 μg/g 之间,方法的精密度<11% (RSD)。

关键词: 土壤; 沉积物; 重金属; 形态分析

中图分类号: S153.9

土壤和沉积物中的重金属含量随着工农业生产的 发展而增加,严重影响着人类及其它生物的健康与生 存^[1]。而土壤和沉积物中的重金属的毒性不仅与其总 量有关,更大程度上由其形态分布所决定^[2]。因此, 土壤和沉积物中的重金属形态分析已成为现代分析化 学特别是环境分析化学领域的一个热门研究方向。

对重金属的形态,目前还没有统一的分类方法。 常见的土壤和沉积物中重金属形态分析方法有如下几 种: Tessier 等将土壤和沉积物中重金属元素的形态分 为可交换态、碳酸盐结合态、铁-锰氧化物结合态、有 机物结合态和残渣态 5 种; Cambrell 认为土壤和沉积 物的重金属存在水溶态、易交换态、无机化合物沉淀 态、氢氧化物沉淀吸收态或吸附态、硫化物沉淀态和 残渣态 7 种; Shuman 分为交换态、水溶态、碳酸盐 结合态、松结合有机态、氧化锰结合态、紧结合有机 态、无定形氧化铁结合态和硅酸盐矿物态 8 种; Forstner 则分为交换态、碳酸盐结合态、无定型氧化 锰结合态、有机态、无定型氧化铁结合态、晶型氧化 铁结合态、残渣态 7 种^[2]; 邵涛等^[3]提出了水溶态、 交换态、碳酸盐结合态、铁锰结合态、有机结合态、 残渣态 6 种。但是这些研究用不同的提取剂、不同的 分析流程往往得到的是"操作性定义"的重金属元素 形态,因此结果很难进行相互比较。欧共体标准局 BCR 将提取方法按步骤定义为弱酸得取态、可还原 态、可氧化态(简称 BCR 法),并组织欧盟 8 个国 家 20 余家实验室进行了 2 轮比对实验,比对结果有 很强的可比性^[4]。据此我们以 BCR 法为基础进行改进,对 Cu、Pb、Zn、Cd、Co、Cr、Mn、Mo、Ni、As、Sb 等 11 个生态地球化学中重要的目标元素进行了试验,探讨该形态分组方案的可行性。

1 材料与方法

1.1 试剂

醋酸(0.11 mol/L,分析纯),盐酸羟胺(0.5 mol/L, 0.05 mol/L 的硝酸介质,分析纯),双氧水(8.8 mol/L), 醋酸铵(1.0 mol/L,用硝酸调至 pH 2,分析纯),硝酸 (1.41 g/ml, UP 级),盐酸(1.18 g/ml,优级纯),高 氯酸(1.66 g/ml,优级纯),氢氟酸(1.15 g/ml,优级 纯),水(>18 k Ω/cm)。

1.2 仪器设备和测定方法

主要设备和仪器有: 250 ml 带盖聚乙烯离心杯、 瑞汀离心机(RJ-TDL-5 型)、水浴恒温振荡器、可调 式电热恒温水浴锅、X7 型电感耦合等离子体质谱仪 (ICP-MS)、原子荧光光度计(AFS-820)。Cd、Co、 Cr、Mn、Mo、Ni、Cu、Pb、Zn 用 ICP-MS 测定, As、Sb 用原子荧光光度计测定。

1.3 提取方法

所有提取步骤都做全程空白。提取步骤简述如下:

(1) 弱酸提取态:称取 1.00 g 风干的土壤或沉积
物样品于 250 ml 离心杯中,加入 40 ml 醋酸溶液
(*c*_{HAc} = 0.11 mol/L),加盖,在 22℃±2℃下振荡提取
1 h,离心 20 min,分离,取上层清液留作分析之

①基金项目:中国地质调查局基金项目(200120190107-04)资助。

作者简介: 黄光明(1966—), 男, 江苏兴化人, 学士, 高级工程师, 主要从事实验测试研究工作。E-mail: jsnjhgm@126.com

用。用 20 ml 的水洗涤剩余物,振荡 15 min,离心 20 min 后,分离掉上层清液。

(2) 可还原态:向(1)中得到的剩余物里加入 40 ml 新配好的盐酸羟胺(*c*_{NH2OHHCl} = 0.5 mol/L),加盖, 在 22℃ ± 2℃下振荡提取 16 h,离心 20 min,分离, 取上层清液作分析。用 20 ml 的水洗涤剩余物,振荡 15 min,离心 20 min 后,分离掉上层清液。

(3) 可氧化态:向(2)中得到的剩余物里缓慢滴加 10 ml 过氧化氢溶液,加盖,在室温下消化 1 h,继续在恒温水浴(85℃±2℃)消化 1 h,直至溶液体积减少到少于 3 ml。再加入 10 ml 过氧化氢溶液后,重复以上操作直至溶液体积减少到大约 1 ml。取下冷却,加入 50 ml 醋酸铵溶液(*c*NH4Ac=1.0 mol/L),在22℃±2℃振荡 16 h,离心 20 min,分离,取上层清液作分析。用 20 ml 的水洗涤剩余物,振荡 15 min,离心 20 min 后,分离掉上层清液。

(4) 残渣态:将(3)中的剩余物在水浴锅中蒸干

至恒重后,将残渣彻底转移到玛瑙研钵中,经研磨后 保存在干燥器中。用盐酸-硝酸-氢氟酸-高氯酸分解, 测定 Cd、Co、Cr、Mn、Mo、Ni、Cu、Pb、Zn;用 盐酸-硝酸分解,测定 As、Sb。并校正为原始样品的 含量。

水溶态单独称样提取测定:称取 2.00 g风干的土 壤或沉积物样品于 250 ml 离心杯中,加入 40 ml 水, 加盖,在 22℃±2℃下振荡提取 16 h (或过夜),离心 20 min,分离,取上层清液作分析。

2 结果与讨论

2.1 分析方法的检出限

制备 12 份各态的空白溶液,分别测定各重金属元 素不同形态的含量并计算标准偏差,按 D.L = 4.6 owb (式中 owb 为空白平行测定标准偏差)计算得到方法 的检出限(《全球环境监测系统水监测操作指南》中的 规定),结果见表 1。

Table 1 Detection limit of analytical method											
元素	水溶态	弱酸态	可还原态	可氧化态	校正残渣态						
As	0.05	0.1	0.1	0.1	1						
Cd	0.001	0.01	0.01	0.01	0.02						
Cr	0.02	0.1	0.1	0.1	1						
Co	0.01	0.05	0.05	0.05	1						
Cu	0.05	0.1	0.1	0.1	0.5						
Mn	0.1	0.5	0.5	0.5	1						
Мо	0.01	0.02	0.02	0.02	0.1						
Ni	0.01	0.1	0.1	0.1	1						
Pb	0.02	0.05	0.05	0.05	0.5						
Sb	0.05	0.1	0.1	0.1	1						
Zn	0.05	0.1	0.2	0.1	1						

表 1 分析方法的检出限(μg/g)

2.2 分析方法的精密度

用由国家地质实验测试中心和国家标准物质研 究中心提供的微量元素顺序提取形态分析数据定值 土壤和沉积物样品分别做 4 次试验,统计各重金属元 素不同形态分析数据的相对平均偏差(表 2)。由表 2 可以看出,各重金属元素分析数据的相对平均偏差均 <11%,满足形态分析方法精密度RSD≤30%^[5]的要 求,适合区域地球化学调查与评价的研究工作,便 于不同实验室以及同一区域不同时间分析数据的比 对。

2.3 各重金属元素不同形态的含量分布特征

各重金属元素不同形态的含量分布特征见表 3。

Mn 在弱酸提取态、可还原态中都有较高的分配,两 者之和约占全量的 50%,显示出在环境中有着非常高 的活动性,对植物和机体的影响日益引起人们的关注 ^[6-7]。Mo 在水溶态中的分配比例最为显著,显示出较 高的环境活性,与植物的生长关系密切^[8]。Cd 在弱酸 提取态、可还原态中也有较高的分配,显示其对环境 的影响是显著性的,被植物吸收、积累成为含 Cd 植 物,对植物、动物、微生物和人体产生强烈的毒害作 用^[9]。Pb 在可还原态中的分配较高,显示 EH 对 Pb 的形态在环境中分配的影响,Pb 不仅会对植物的生长 及生理生化过程产生影响,而且能够通过食物链对人 要以残渣态存在,在环境中活性较低。元素在不同形态中的分配情况表明,虽然生态地球化学研究中所列的元素较多,但 Mn、Mo、Cd、Pb 等元素在不同形态中显示出较高的分配比例值得关注,可作为研究重金属对环境影响的重点目标物。

2.4 各重金属元素不同形态量与全量的比较

各重金属元素不同形态量与全量的比较见图 1。 除Mo之外,As、Cd、Co、Cr、Cu、Pb、Mn、Ni、Sb、 Zn等 10 个元素各形态的加和均在全量的 86%~113% 之间,满足各形态加和不低于全量 80% 的要求^[6],说 明该形态分组较为合理,采用的浸提剂适合有效。而 有 2 个样品Mo的各形态加和在全量的 80% 以下,可 能是由于四酸不能完全分解残渣态中的Mo所致。另取 残渣态样品,碱熔极谱法测定Mo,重新加和,其和量 均在全量的 90% 以上,但为了研究的方便,采用四酸 分解残渣态,质谱法同时测定Cd、Co、Cr、Cu、Pb、 Mn、Ni、Zn、Mo等 9 个微量元素快速又经济。

表 2	精密度试验(%)	
Table 2	Results of precision test	

重金属	属 水溶态			弱酸态			可还原态			可氧化态			校正残渣态		
	土样 1	土样 2	沉积物	土样 1	土样 2	沉积物	土样 1	土样 2	沉积物	土样 1	土样 2	沉积物	土样 1	土样 2	沉积物
As	*	*	9.36	*	*	*	*	1.72	0.66	3.98	2.90	8.70	0.67	1.00	1.17
Cd	*	*	*	1.02	2.84	0.39	1.62	1.83	1.20	5.31	10.80	3.71	6.37	5.03	7.69
Со	10.51	*	2.18	1.12	1.99	1.18	0.27	0.82	1.63	2.73	2.06	1.64	1.31	1.21	1.53
Cr	9.89	3.90	0.00	3.98	3.77	2.74	0.23	1.46	1.80	2.19	3.57	1.40	1.22	2.49	0.69
Cu	7.51	*	2.69	1.15	1.80	0.53	*	1.25	1.26	5.19	3.79	3.33	0.99	3.39	0.79
Pb	4.84	*	3.98	1.65	8.78	1.92	0.83	0.71	0.90	5.02	4.24	2.02	2.59	2.66	0.96
Mn	7.11	*	2.09	1.75	1.46	0.56	0.43	1.18	1.27	1.51	1.94	1.03	1.21	1.49	0.93
Мо	2.74	2.28	1.89	6.98	7.04	4.85	1.34	3.92	9.79	4.44	4.28	2.10	4.85	4.05	3.08
Ni	8.17	*	0.74	1.13	0.56	0.75	0.61	0.66	1.73	2.62	1.93	2.37	1.20	2.68	0.87
Sb	*	*	*	*	*	*	9.94	*	4.88	*	*	6.20	0.95	2.69	0.89
Zn	7.27	8.90	9.71	2.07	10.57	0.56	0.73	1.17	1.06	3.36	10.09	1.83	1.52	2.19	0.89

*: 小于检出限。

表3各重金属元素不同形态的分布特征(%)

Table 3 Fraction distributions of heavy metal elements

重金属	属水溶态		弱酸态		可还原态		可氧化态			校正残渣态					
	土样 1	土样 2	沉积物	土样 1	土样 2	沉积物	土样 1	土样 2	沉积物	土样 1	土样 2	沉积物	土样 1	土样 2	沉积物
As	0.00	0.00	0.57	0.00	0.00	0.00	10.15	7.01	3.26	1.44	1.22	0.39	88.40	91.77	95.78
Cd	0.00	0.00	0.00	37.54	58.48	58.66	31.66	27.29	31.29	4.06	1.73	3.77	26.73	12.50	6.28
Co	0.12	0.00	0.16	9.65	3.16	8.48	14.37	23.75	36.77	8.98	1.87	5.04	66.88	71.23	49.55
Cr	0.13	0.06	0.20	0.11	0.26	0.28	3.63	1.56	4.22	8.63	2.41	8.40	87.49	95.71	86.89
Cu	0.31	0.00	0.20	2.77	1.08	6.09	26.13	12.52	21.13	8.94	2.21	3.67	61.84	84.19	68.91
Pb	0.14	0.00	0.18	2.19	0.19	2.19	59.22	34.62	58.78	8.08	4.37	6.86	30.37	60.82	31.99
Mn	0.51	0.00	0.24	31.73	20.11	23.61	26.12	36.00	51.75	4.06	1.84	3.01	37.58	42.05	21.38
Мо	3.66	12.03	2.51	0.37	1.01	0.16	1.22	1.58	0.28	45.14	16.70	22.61	49.61	68.67	74.44
Ni	0.21	0.00	0.23	4.14	6.74	3.85	7.72	9.37	5.93	8.80	6.10	5.25	79.13	77.79	84.74
Sb	0.00	0.00	0.00	0.00	0.00	0.00	1.89	0.00	2.13	0.00	0.00	0.74	98.11	100	97.13
Zn	1.92	0.22	0.57	4.43	0.05	12.23	13.81	4.87	13.48	8.89	0.80	7.31	70.95	94.06	66.42

2.5 标样试验

分析欧盟标准样品(BCR701也就是 CRM701),

测试数据见表 4。可以发现,分析数据与欧盟推荐的 推荐值比较吻合。 表 4 BCR701 的分析结果 (μg/g)

	Table 4 Analytical results of BCR701											
重金属	数值	弱酸态	可还原态	可氧化态	校正残渣	加合(B)	全量(A)	100*(A-B)/A				
Cd	测定值	7.31	3.3	0.22	0.104	10.934	11.7	6.55				
		7.26	3.33	0.21	0.096	10.896	11.7	6.87				
	推荐值	7.34	3.77	0.27								
Cr	测定值	2.24	46.7	123	102	273.94	272	-0.71				
		2.24	47.6	122	104	275.84	272	-1.41				
	推荐值	2.26	45.7	143								
Cu	测定值	43.81	116	50.5	64.79	275.1	275	-0.036				
		45.01	114	49.7	64.18	272.89	275	0.77				
	推荐值	49.3	124	55.2								
Pb	测定值	2.43	110	8.75	21.62	142.8	143	0.14				
		2.57	112	8.55	20.15	143.27	143	-0.19				
	推荐值	3.18	126	9.3								
Ni	测定值	14.1	26.6	12.6	50.89	104.19	103	-1.16				
		13.65	27	12.2	52.71	105.56	103	-2.49				
	推荐值	15.4	26.6	15.3								
Zn	测定值	187	96.3	34.9	141	459.2	454	-1.15				
		187	95.9	34.5	131	448.4	454	1.23				
	推荐值	205	114	45.7								

3 结语

重金属形态分析可以用来研究环境污染及胁迫问题,污染及胁迫的问题具有将来性、潜在性的特点, 而导致这一危险的可能自然因素主要有两个:一是酸 雨效应,亦即 pH 变化带来的影响;二是局部环境氧化 -还原电位的变化,亦即 Eh 变化带来的影响。该形态 分析方案能较好地反映土壤和沉积物中11种重金属元 素的形态分布情况。同时,选用低浓度以及无 Ca、 Mg 元素的提取剂也有利于高灵敏度分析仪器如 ICP-MS 的同时多元素测定,使测定方便快捷,结果 可靠。

参考文献:

- [1] 冯素萍, 鞠莉, 沈永, 裘娜, 李鑫, 祝培明, 王伟. 沉积物中重 金属形态分析方法研究进展. 化学分析计量, 2006, 15 (4): 72-74
- [2] 韩春梅, 王林山, 巩宗强, 许华夏. 土壤中重金属形态分析及 其环境学意义. 生态学杂志, 2005, 24 (12): 1499-1502
- [3] 邵涛,刘真.油污染土壤重金属赋存形态和生物有效性研究. 中国环境科学,2000,20(1):57-61
- [4] 王亚平,黄毅,王苏明,许春雪,刘妹.土壤和沉积物中元素 的化学形态及其顺序提取法.地质通报,2005,24(8):728-734
- [5] 中国地质调查局.中国地质调查局地质调查技术标准.生态地 球化学评价样品分析技术要求.北京:中国标准出版社,2005
- [6] 地里拜尔・苏里坦, 艾尼瓦尔・买买提, 蔺娟. 土壤中铁锰的 形态分布及其有效性研究. 生态学杂志, 2006, 25(2): 155-160
- [7] 张丽娜,陈一资. 锰及其毒性的研究进展. 应用研究, 2007, 101(7): 38-42
- [8] 邱海鸥,杨小秋,周延彪,汤志勇.土壤中钼的形态分析方法 研究.安全与环境工程,2002,9(4):6-7
- [9] 刘发欣,高怀友,伍钧.镉的食物链迁移及其污染防治对策研究.农业环境科学学报,2006,25(增刊):805-809
- [10] 周宁晖,季国军.蔬菜与土壤环境中铅镉含量相关性调查.环 境监测管理与技术,2007,19(3):23-24

Analytical Method of Heavy Metal Fractions in Soil and Sediment

HUANG Guang-ming¹, ZHOU Kang-min¹, TANG Zhi-yun¹, WANG Ya-ping², GAO Xiao-li¹, XIAO Ling¹, JIANG Ye¹ (1 Geological Survey of Jiangsu Province, Nanjing 210018, China; 2 Nantional Research Center of Geo-analysis, Beijing 100037, China)

Abstract: The article introduced a analytical method of heavy metal fractions in soil and sediment. Heavy metals in soil and sediment were divided into five fractions: water soluble, acid extractable, reducible, oxidizable and residual. They were extracted respectively by water, 0.11mol/L acetic acid, 0.5mol/L hydroxyamine hydrochloride, hydrogen peroxide and 1.0 mol/L ammonium acetate, and hydrochloric acid-nitric acid-hydrofluoric-perchloric acid. It was adapted to special analyses of heavy metals including Cu, Pb, Zn, Cd, Cr, Co, Mn, Mo, As, Sb and Ni. The detection limit were $0.001 \sim 1 \mu g/g$. The precision test were less than 11% RSD (n = 4).

Key words: Soil, Sediment, Heavy metal, Analysis of fractions