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Effects of Bacterial Growth Process on Virus Removal
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Abstract: The existence and different growth stages of local microbe in environment may affect the virus fate. In this study,
Pseudomonas putida (PP), Pseudomonas aeruginosa (PA) and Bacillus subtilis (BS), widely found in nature, were chosen as
microbe representative. Using bacteriophage ¢X174 as virus indicator to do synchronization culture experiments with the bacteria
under the condition of 30°C (PP) and 35°C (PA and BS) and static adsorption experiments with the strain cultures of different
growth periods under the condition of 4°C, the impacts of bacterial growth and development stages on virus removal (including
the reversible / irreversible adsorption and demise) were compared and analyzed. The incubation experiment results showed that
in cultures of 30°C and 35°C, the virus concentration decreased with the extension of incubation time, but when medium
inoculated, virus concentration drastically reduced more than the control from inoculation to the logarithmic phase of 6 h, the
largest decline was found in BS, followed by PA and PP. With the bacteria from the logarithmic phase into the stable phase and
decline phase, virus concentration rebounded to rise at first and then continued to reduce. To the three bacteria, the highest points
of the rebound virus concentration were higher than their control respectively, the duration and extent of virus concentration
enhance of rebound varied according to different strains. The static experimental results showed that the proportion of virus
removal was gradually reduced when the incubation time of strain culture extended from 6 h to 18 h, but rapidly increased when
extended to 24 h and then decreased with further extension of time. These results suggested that the influence of bacteria on virus
removal was changed with bacterial growth stages and strains, which implies that the existence of local microbes and their
components should be considered when studying the fate of viruses in the environment.

Key words: Pseudomonas putida, Pseudomonas aeruginosa, Bacillus subtilis, Bacteriophage $X174, Fate



