大气 CO_2 浓度升高对稻田土壤 Ca、Mg 迁移的中长期效应^①

宋亭洁^{1,2},朱建国^{1*},孙会峰³,刘 钢¹,唐昊冶¹,曾 青¹

(1 土壤与农业可持续发展国家重点实验室(中国科学院南京土壤研究所),南京 210008;2 中国科学院大学,北京 100049;3 上海市农业科学院生态环境保护研究所,上海 201403)

摘 要:为了进一步认识稻田土壤中 Ca、Mg 元素生物地球化学循环对大气 CO₂浓度升高的响应,本实验利 用中国稻麦轮作 FACE(free air carbon-dioxide enrichment)试验平台,通过观测稻季不同生育期不同深度(30、60 和 90 cm)土壤溶液中的 Ca²⁺、Mg²⁺ 浓度,研究大气 CO₂浓度升高对土壤 Ca、Mg 淋移的中长时期(第 9 年)影响。研究 结果表明,随着土壤深度的增加,土壤溶液中的 Ca²⁺浓度呈降低趋势,Mg²⁺浓度呈增加趋势;随着生育期的推进, 呈现先增加后减小的趋势,并在抽穗期达到最大值。大气 CO₂浓度升高略微降低 30、60 cm 处土壤溶液的 Ca²⁺ 浓 度,增加 90 cm 处 Ca²⁺ 浓度(6.7%)。稻田不同深度土壤溶液中 Mg²⁺ 浓度对大气 CO₂ 浓度升高的响应有所不同,且 在 60 cm 处有较强的正响应(12.1%)。研究明确高浓度 CO₂ 有加剧 Ca²⁺、Mg²⁺ 向下淋溶损失的趋势,耕层土壤有机 物料输入增多、HCO₃ 浓度增加、pH 下降等是主要原因。大气 CO₂浓度升高对农田生态系统土壤 Ca、Mg 元素循 环的长期影响值得进一步关注。

关键词:CO2浓度升高;稻田土壤溶液;Ca;Mg;淋溶 中图分类号:S153.5;S151.9

由于煤炭、石油等化石燃料的大量使用和森林、 植被的大面积破坏及土地利用方式的改变,自工业 革命以来,大气 CO₂ 浓度迅速增加,已由之前的 280 μmol/mol 上升到目前的大约 380 μmol/mol^[1], 且仍在继续上升^[2]。大气 CO₂ 浓度升高引起的全球 环境变化对稻田生态系统的影响已引起国内外学者 的广泛关注。目前较多的关注集中在地上部分,比 如水稻光合、蒸腾作用和水稻产量等^[3],而地下部 分关于水稻根系、土壤呼吸等方面^[4],特别是对土 壤养分变化的研究^[5]则较少。高浓度 CO₂ 促进植物 光合作用,进而通过根系分泌物及植物残体间接地 影响稻田养分迁移转化,进而影响土壤对作物的养 分供应及植物根系对养分的吸收利用,最终影响稻 田矿质元素的生物地球化学循环。

Ca 和 Mg 是土壤中最丰富的碱土金属元素,主 要以碳酸盐和硅酸盐的形式存在于土壤中。Ca、Mg 是水稻必需营养元素,Ca²⁺、Mg²⁺ 是土壤溶液中主 要的阳离子,对水稻的健康生长极为重要。Ca 能提 高植物抗逆性^[6],Mg 是光合作用过程中不可缺少的 元素,与稻米的产量、品质紧密相关^[7]。中国稻麦 轮作 FACE 平台的前期研究结果表明,大气 CO₂浓 度升高,增加耕层土壤溶液中 Ca²⁺、Mg²⁺的浓度^[5,8], 短期试验已观测到 Ca²⁺ 的淋移趋势^[9]。高浓度 CO₂ 加速土壤的矿化,促进土壤中养分释放,有利于植 物生长。但从长期来看,CO₂ 浓度升高引起的离子 释放可能导致养分流失和土壤退化,对农田生态系 统生产力产生负面影响,进而影响到作物产量^[5]。 为了明确高浓度 CO₂对土壤 Ca²⁺、Mg²⁺ 迁移的中长 期效应,本实验利用中国稻麦轮作 FACE 平台,在 实验进行的第9年,对不同埋深土壤溶液跟踪监测。 研究结果也可为进一步认识未来气候变化条件下稻 田矿质元素的地球化学行为以及农业生产中的肥料 施用提供参考依据。

1 材料与方法

1.1 试验地区及 FACE 平台概况

中国稻麦轮作 FACE 研究平台位于江苏省江都 市小纪镇宗村良种站(119°42′0″ E, 32°35′5″ N),并在

* 通讯作者(jgzhu@issas.ac.cn)

作者简介:宋亭洁(1988—),女,山西孝义人,硕士研究生,主要从事生态系统物质循环与环境效应的研究。E-mail:tjsong@issas.ac.cn

基金项目:科技部国际科技合作与交流项目(2010DFA22770),国家自然科学基金国际(地区)合作与交流项目(31261140364)和国家自然 科学基金项目(41271310)资助。

2004 年稻季开始运行。研究地区年降雨量约 1 000 mm, 年均温度约 15℃,年均日照时间大于 2 000 h,年无霜 期大 220 天。土壤类型为砂姜黑土,土壤质地为砂 壤(2 ~ 0.02 mm 砂粒 578 g/kg,0.02 ~ 0.002 mm 粉粒 285 g/kg, < 0.002 mm 黏粒 137 g/kg)。0~15 cm 耕层 土壤的基本性质为:pH(H₂O)7.2,有机碳 18.4 g/kg, 全氮 1.45 g/kg,全磷 0.63 g/kg,全钾 14.02 g/kg,速效 磷 10.1 mg/kg 速效钾 70.5 mg/kg,体积质量 1.16 g/cm³, CEC 12.8 cmol/kg,交换性 Ca、Mg、K 分别为 5.2、

0.96、0.12 cmol/kg。其测定按常规方法进行。

该平台共有 3 个 Ambient 圈(即对照圈,自然大 气中 CO₂ 浓度 約 370 µmol/mol)和 3 个 FACE 圈(比 自然大气 CO₂ 浓度增加 200 µmol/mol)。FACE 圈设 计为正八角形,直径为 14 m,通过 FACE 圈周围的 管道向圈中心喷射纯 CO₂ 气体,电脑控制圈内 CO₂ 浓度,使其全生育期 CO₂ 平均浓度保持在比正常大 气 CO₂ 浓度高 200 µmol/mol,控制误差为 10%。除 FACE 圈 CO₂ 浓度升高外,FACE 圈和对照圈的环境 条件与自然状态完全一致。关于该平台技术系统的 运行,刘钢等^[10-11]等对其进行了细致阐述。

1.2 试验设计

试验于 2012 年稻季进行。2012 年稻季的气候 状况如图 1 所示。供试水稻品种为杂交稻 优 084,大 田育秧。于6月 20 日移栽,行距 25 cm,株距 16.7 cm, 24 穴/m²,1 苗/穴。氮肥的施用量为 N 250 kg/hm²,分 基肥、分蘖肥和穗肥 3 次施用。基肥占总施氮量的 36%,分蘖肥占 24%,穗肥占 40%。磷肥(P₂O₅)和钾 肥(K₂O)的施用量均为 70 kg/hm²,做基肥一次性施 入稻田。

在距地表 30、60 和 90 cm 处埋设抽滤管,每个 圈内设 3 个重复。抽滤管使用注射器外管制作。在管 壁上打多个小孔(直径约 2 mm),为了阻止土壤颗粒 进入管内,外部用尼龙布(300 目)缠裹 3 层后扎紧。

塑料管上部用橡皮塞封口,将两根硬质塑料细管的一端分别穿过橡皮塞插入塑料管,另一端均露出地表, 一根用来与大气压平衡,另外一根供抽取土壤溶液。

1.3 样品采集与分析

在整个水稻季, 共采集 5 次水样。水稻移栽前 (6月17日)采集一次,将水样过 0.45 μ m 滤膜,过 滤后水样用硝酸酸化至 pH < 2,放入 4℃冰箱中保 存,及时测试其中 Ca²⁺、Mg²⁺的浓度。移栽之后, 根据水稻生长状况,分别在分蘖期(7月17日)、拔 节期(8月15日)、抽穗期(8月29日)和乳熟期(9月 14日),抽取 30、60 和 90 cm 处土壤溶液。采样时 避免稻田灌水或者阴雨天。采集的水样储存于塑料 瓶中,尽快带回实验室,立即测定其 pH。然后将水 样过 0.45 μ m 滤膜,过滤后的水样分成两部分,一 部分水样当天测定其中 HCO₃ 的浓度,另一部分过 滤后水样用于测定其中 Ca²⁺、Mg²⁺的浓度。

土壤溶液样品的 pH 用微机型 pH 计(pHS-3C, SHKY)测定。土壤溶液中的 HCO₃ 浓度采用酸标准 溶液滴定法(F-HZ-DZ-DXS-0023 地下水 碳酸根重 碳酸根和氢氧根的测定)。土壤溶液中的 Ca²⁺、Mg²⁺ 浓度采用电感耦合等离子体发射光谱仪 ICP-OES (Optima 8000, USA)测定。

1.4 数据处理

用 Microsoft Excel 2010 对数据进行处理,并用 SPSS16 软件对结果进行统计分析。

2 结果

2.1 土壤溶液的 pH

从表 1 可以看出,无论是对照处理还是 FACE 处理,随着水稻生育期的推进,各个土层的土壤溶 液 pH 都表现出相同的变化趋势:先略有降低后又 有所升高,在乳熟期降至最低。另外,土壤溶液的 pH 是随着土壤深度的增加而增大的,特别是在拔节 期和抽穗期,高浓度 CO₂处理下的 60 cm 和 90 cm 处土壤溶液 pH 显著高于 30 cm 处的(P < 0.05)。

FACE 处理各个生育期不同土层中土壤溶液的 pH 基本高于对照处理,但都没达到统计上的显著性 差异。从分蘖期到抽穗期,FACE 处理与对照处理 的土壤溶液 pH 之间的差异逐渐增加,且在抽穗期, 综合 3 个深度的数据,大气 CO₂浓度升高显著增加 土壤溶液的 pH (*P* < 0.01)。

2.2 土壤溶液中的 HCO₃ 浓度

从表 2 可以看出,随着生育期的推进,FACE 和对照处理土壤溶液中 HCO₃ 浓度在不同深度的 变化趋势基本一致,呈缓慢的升高趋势。但 FACE 处

壤

Table	e 1 Effect of el	Effect of elevated CO_2 on pH of soil solution at different depths in different developmental stages of the rice growing season								
土壤深度	分蘖期		拔节期		抽穗期		乳熟期			
(cm)	FACE	Ambient	FACE	Ambient	FACE	Ambient	FACE	Ambient		
30	$6.92\pm0.06~a$	6.92 ± 0.07 a	$6.64\pm0.05~b$	6.75 ± 0.08 a	$6.86\pm0.03~b$	6.69 ± 0.12 a	6.64 ± 0.06 a	$6.55\pm0.05~a$		
60	7.03 ± 0.03 a	6.96 ± 0.10 a	6.86 ± 0.06 a	$6.82\pm0.06~a$	7.00 ± 0.05 a	$6.71\pm0.12~a$	6.70 ± 0.04 a	$6.58\pm0.12~a$		
90	7.05 ± 0.06 a	7.01 ± 0.09 a	6.90 ± 0.05 a	6.85 ± 0.04 a	7.00 ± 0.02 a	6.76 ± 0.09 a	6.76 ± 0.03 a	6.64 ± 0.09 a		

表 1 大气 CO₂浓度升高对稻季不同生育期不同深度土壤溶液 pH 的影响

注:表中数据为平均值 \pm 标准误差;同列小写字母不同表示差异在 P < 0.05 水平显著;下同。

表 2 大气 CO₂浓度升高对稻季不同生育期不同深度土壤溶液 HCO₃ 浓度的影响(mg/L)

Table 2 Effect of elevated CO_2 on HCO_3^- concentration of soil solution at different depths in different developmental stages of the rice growing season

				0 0				
土壤深度	分蘖期		拔节期		抽穗期		乳熟期	
(cm)	FACE	Ambient	FACE	Ambient	FACE	Ambient	FACE	Ambient
30	$515.7 \pm 36.2 \text{ a}$	$462.1\pm30.9~a$	$585.8\pm55.4~a$	$545.5 \pm 79.0 \ a$	$637.9\pm39.7~a$	$730.4 \pm 125.1 \text{ a}$	$720.5 \pm 51.6 \text{ a}$	$683.2\pm88.9~a$
60	$396.8 \pm 11.6 \ b$	$407.2\pm21.3\;a$	$493.6 \pm 37.5 \ a$	$536.5 \pm 63.9 \ a$	$511.3 \pm 47.1 \text{ a}$	$587.2\pm69.9~a$	$644.9 \pm 53.8 \text{ a}$	$693.2\pm65.4~a$
90	$407.9\pm13.2~\mathrm{b}$	$398.4 \pm 10.4 \text{ a}$	$486.0\pm41.9~a$	$520.4\pm72.1~a$	$493.9\pm54.8~a$	584.1 ± 118.7 a	a 659.2 \pm 65.2 a	$692.3\pm83.6~a$

理对不同深度土壤溶液中 HCO₃ 浓度的影响有所 不同。FACE 处理 30 cm 处土壤溶液中 HCO₃ 浓度 除在抽穗期低于对照处理外(-12.7%),其他时期均 高于对照处理,增幅为 5.5% ~ 11.6%。而在 60、90 cm 处,除在分蘖期 90 cm 处略高于对照处理外(2.4%), FACE 处理土壤溶液中 HCO₃ 浓度全部低于对照 处理,降幅分别为 2.6% ~ 12.9% 和 4.8% ~ 15.4%。 此外,土壤溶液中 HCO_3^- 浓度随着深度的增加而 呈下降的趋势,且在分蘖期, CO_2 浓度升高条件 下 30 cm 处 HCO_3^- 浓度显著高于 60、90 cm 处(P < 0.01)。

2.3 土壤溶液中的 Ca²⁺ 和 Mg²⁺ 浓度

从图 2 可以看出,随着生育期的推进,不论 FACE 处理还是对照处理,不同土层中土壤溶液的

图 2 稻季不同生育期不同深度土壤溶液中 Ca²⁺、Mg²⁺ 浓度对大气 CO₂ 浓度升高的响应 Fig. 2 Effect of elevated CO₂ on Ca²⁺、Mg²⁺concentration in soil solution at different depths in different developmental stages of rice growing season

 Ca^{2+} 、 Mg^{2+} 浓度呈现先上升后下降的趋势,且都在 抽穗期达到最大值。整个水稻生育期中,FACE 处 理和对照处理在 30、60 和 90 cm 处土壤溶液的 Ca^{2+} 浓度差异不明显。在水稻的抽穗期,FACE 处理 90 cm 处的土壤溶液 Ca^{2+} 浓度要比对照处理高 17.4%,但没 有达到显著水平。相比之下,FACE 处理对 Mg^{2+} 浓度 的影响未表现出明显的规律性。

随着土层深度的增加,无论 FACE 还是对照处理,土壤溶液的 Ca²⁺ 浓度呈降低趋势,而 Mg²⁺浓

度呈升高趋势(表 3)。与对照处理相比, FACE 处理 降低整个生育期 30 cm 处土壤溶液中 Ca^{2+} 、 Mg^{2+} 浓 度,降幅分别为 4.0%、5.1%,表现出相同的规律性。 同样地, FACE 处理 60 cm 处 Ca^{2+} 浓度以及 90 cm 处 Mg^{2+} 浓度也都低于对照处理。相反地, FACE 处 理提高整个稻季 90 cm 处 Ca^{2+} 浓度和 60 cm 处 Mg^{2+} 浓度,增加幅度为 6.7%、12.1%,但差异均未达到 显著水平。与 30 cm 处相比 60 cm 和 90 cm 处 Ca^{2+} 、 Mg^{2+} 浓度的 FACE 效应相对有所增加。

表 3 大气 CO₂浓度升高对整个稻季土壤溶液 Ca²⁺、Mg²⁺ 平均浓度的影响

Table 5 Effect of elevated CO_2 on averaged Ca and Mg concentration in solution in the growing season									
处理	_	Ca^{2+} (mg/L)			Mg^{2+} (mg/L)				
	30 cm	60 cm	90 cm	30 cm	60 cm	90 cm			
FACE	165.6 ± 5.25	155.1 ± 4.66	156.0 ± 10.12	36.3 ± 3.10	42.0 ± 5.25	42.4 ± 6.64			
Ambient	172.6 ± 24.6	157.4 ± 5.98	146.3 ± 8.04	38.2 ± 10.3	37.5 ± 4.22	43.5 ± 7.76			
FACE 效应	-4.0%	-1.5%	6.7%	-5.1%	12.1%	-2.7%			
P 值	0.745	0.778	0.492	0.837	0.538	0.915			

注: FACE 效应 = (FACE – Ambient)/Ambient × 100%。

3 讨论

FACE 试验的短期观测表明,随着大气 CO2浓度 升高年份的增加,对土壤溶液中 Ca²⁺、Mg²⁺ 浓度 15 cm 处和 5 cm 处的比值的增幅有扩大趋势,表现出一定的 累积效应^[8]。前期观测结果也显示,大气CO₂浓度升高 明显提高了耕层土壤溶液中 HCO₃ 浓度,其不是源于 近地表大气高 CO₂ 浓度的直接溶解,而主要与水稻根 系呼吸和分泌物等有关^[12]。本试验首次对 FACE 条件 下耕层以下 HCO₃ 浓度进行了观测,这对于了解大气 高浓度 CO₂ 对稻田生态系统元素的地球化学行为的影 响有重要意义。最终结果显示,在埋深 30 cm 处,也许 是受到水稻根系的影响, FACE 条件下土壤溶液中的 HCO₃ 浓度在多数采样时间内都呈现增大趋势。但是 在较深的土层(60、90 cm)中,大气 CO₂浓度升高则降 低了土壤溶液中的 HCO₃ 浓度。这很可能是由 FACE 条件下土壤溶液中 Ca²⁺、Mg²⁺ 等盐基离子迁移时的陪 伴阴离子的淋溶增加而引起 pH 的增大造成的 (表 1)。

本文研究结果显示,无论 FACE 还是对照处理, 土壤溶液中的 Ca^{2+} 、 HCO_3^- 浓度均随着深度的增加而 减小,变化规律一致。整个生育期中,大气 CO_2 浓度 升高降低了耕层以下 30 cm 处土壤溶液中 Ca^{2+} 、 Mg^{2+} 浓度;增加了更深层次 90 cm 处 Ca^{2+} 浓度,增幅为 6.7%(表 3),在抽穗期增幅达最大,为 17.4%(图 2); 同时也增加了 60 cm 处 Mg^{2+} 含量,增幅为 12.1%(表 3)。 说明较长时期升高的大气 CO_2 浓度,使 Ca^{2+} 、 Mg^{2+} 向 较深土层迁移,并在下层土壤中累积。

前期大量研究结果表明,大气CO2浓度增加会促 进植物的光合作用^[3],进而引起根系分泌物的增加^[13], 改变了根际微环境,降低土壤 pH,进而促使 Ca²⁺、 Mg²⁺ 向水中迁移 ;大气 CO₂ 浓度升高还会使进入土壤 的碳源增多,加速土壤有机物的分解,提高了土壤微 生物的活性和数量^[14],土壤的呼吸作用也逐渐增 加^[15],呼吸作用放出 CO2导致土壤 pH 降低,从而加 速土壤矿化,促使难溶性的 Ca²⁺、Mg²⁺ 向水中迁移。 这些是造成大气 CO2 浓度升高条件下, 耕层土壤溶液 Ca²⁺、Mg²⁺ 浓度较高的原因。本实验结果证实,长期 大气 CO2 浓度升高条件下,由于耕层土壤溶液增加的 Ca²⁺、Mg²⁺不断向下淋溶,到耕层以下 30 cm 处继续 淋溶,导致 30 cm 处土壤溶液 Ca²⁺、Mg²⁺ 浓度低于对 照处理, 60 cm、90 cm 处则有升高的趋势。而对应的 不同深度土壤溶液的 pH 也表现出相同的规律性。有 研究发现,施用钙镁磷肥有提高土壤 pH 的作用^[16]。 从本实验结果可以得出,土壤溶液中 Ca²⁺、Mg²⁺ 浓度 与其 pH 表现出一定的正相关性。FACE 条件下 Ca²⁺、 Mg²⁺ 的淋溶损失对稻田生态系统 Ca、Mg 元素的供应 性产生直接影响,并可能对稻米产量和品质造成影响。 长期来看,将影响土壤 Ca、Mg 矿质元素生物地球化 学循环。因此,在未来气候模式下,应更加注意钙镁 肥合理施用以维持土壤 Ca、Mg 元素平衡。

4 结论

大气 CO₂ 浓度升高降低 30、60 cm 处土壤溶液

的 Ca^{2+} 浓度,增加 90 cm 处 Ca^{2+} 浓度。稻田不同深 度土壤溶液中 Mg^{2+} 浓度对大气 CO_2 浓度升高的响应 有所不同,在 60 cm 处有较强的正响应。本研究明确 高浓度 CO_2 有加剧 Ca^{2+} 、 Mg^{2+} 向下淋溶损失的趋势。

参考文献:

- Lowenstein TK, Demicco RV. Elevated Eocene atmospheric CO₂ and its subsequent decline[J]. Science, 2006, 313(5 795): 1 928
- [2] Genthon C, Jouzel J, Barnola JM, Raynaud D, Lorius C. Vostok ice core - climatic response to CO₂ and orbital forcing changes over the last climatic cycle[J]. Nature, 1987, 329(6138): 414–418
- [3] Kimball BA, Kobayashi K, Bindi M. Response of agricultural crops to free-air CO₂ enrichment[J]. Advances in Agronomy, 2002, 77: 293–368
- [4] 孙会峰,朱建国,谢祖彬,刘钢,蔺兴武.稻田 CO₂ 排放对 大气 CO₂ 浓度升高的响应[J]. 土壤, 2012, 44(6): 933–940
- [5] Cheng L, Zhu JG, Chen GP, Zheng XH, Oh NH, Rufty TW, Richter Dd, Hu SJ. Atmospheric CO₂ enrichment facilitates cation release from soil[J]. Ecology Letters, 2010, 13(3): 284–291
- [6] 邓文, 青先国, 蒲熙, 王思哲, 龚浩如. 施钙对超级杂交 稻抗倒性的影响[J]. 生态学杂志, 2009, 28(4): 632-637
- [7] 姜龙. 氮钾镁肥配比对水稻产量及稻米品质的影响[J].黑龙江农业科学, 2010(8): 65-68
- [8] 王小治, 尹微琴, 孙伟, 盛海君, 封克, 朱建国. 大气

CO₂浓度升高对稻季耕层土壤溶液中 Ca、Mg 浓度的影响[J]. 中国农业科学, 2010, 43(20): 4 221-4 228

- [9] 尹微琴,王小治,盛海君,许健,封克,朱建国.大气 CO₂浓度升高对稻田土壤 Ca、Mg 含量的影响[J]. 生态 环境学报,2010,19(11):2546-2550
- [10] 刘钢, 韩勇, 朱建国, 冈田益己, 中村浩史, 吉本真由美 稻麦轮作 FACE 系统平台 . 系统结构与控制[J]. 应用 生态学报, 2002, 13(10): 1 253-1 258
- [11] 韩勇,刘钢,朱建国,冈田益己,吉本真由美. 稻麦轮作 FACE 系统平台 . 系统控制和数据分析软件[J]. 应用 生态学报,2002,13(10):1259-1263
- [12] 王小治, 尹微琴, 孙伟, 封克, 朱建国. 大气 CO₂ 浓度升 高对稻田土壤溶液中阴离子浓度的影响[J]. 生态学杂志, 2010, 29(8):1634-1638
- [13] Phillips RP, Finzi AC, Bernhardt ES. Enhanced root exudation induces microbial feedbacks to N cycling in a pine forest under long-term CO₂ fumigation[J]. Ecology Letters, 2011, 14(2): 187–194
- [14] 苑学霞,褚海燕,林先贵,尹睿,胡君利,朱建国.土壤 微生物生物量和呼吸强度对大气CO₂浓度升高的响应[J]. 植物营养与肥料学报,2005,11(4):564-567
- [15] Kou T, Zhu J, Xie Z, Hasegawa T, Heiduk K. Effect of elevated atmospheric CO₂ concentration on soil and root respiration in winter wheat by using a respiration partitioning chamber[J]. Plant and Soil, 2007, 299(1/2): 237–249
- [16] 朱奇宏,黄道友,刘国胜,朱光旭,朱捍华,刘胜平.改良剂对镉污染酸性水稻土的修复效应与机理研究[J].中国生态农业学报,2010,18(4):847-851

Medium-long Term Effects of Elevated Atmospheric CO₂ on Transposition of Ca and Mg in a Rice Paddy Field

SONG Ting-jie^{1,2}, ZHU Jian-guo^{1*}, SUN Hui-feng³, LIU Gang¹, TANG Hao-ye¹, ZENG Qing¹

(1 State Key Laboratory of Soil and Sustainable Agriculture (Institute of Soil Science, Chinese Academy of Sciences), Nanjing 210008, China; 2 University of Chinese Academy of Sciences, Beijing 100049, China; 3 ECO-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China)

Abstract: To further investigate the response of biogeochemical cycle of Ca and Mg to atmospheric CO₂ enrichment, a study associated with the medium-long term effects of elevated CO₂ on transposition of Ca and Mg at three soil depths (30, 60, and 90 cm) in different developmental stages was carried out on China rice-wheat rotation FACE (Free Air Carbon-dioxide Enrichment) experimental platform in the rice growing season. The results showed that with the increment in the soil depth, the Ca²⁺ concentration in soil solution showed a trend of decrease, and the Mg²⁺ concentration was increasing; whereas they increased at first and decreased then, and peaked at heading stage. Atmospheric CO₂ enrichment slightly decreased the Ca²⁺ concentration in the soil solution at 30 and 60 cm, but enhanced it at 90 cm (6.7%). It was detected that the responses of Mg²⁺ concentration in the soil solution to elevated CO₂ differed with the soil depth, and a stronger positive response was found at 60 cm (12.1%). This study indicated that elevated CO₂ tends to intensify the leaching loss of Ca²⁺ and Mg²⁺, the increase in organic materials input and HCO₃⁻ concentration, and decrease in pH in the plow layer are the main causes. The long term effects of elevated CO₂ on Ca and Mg cycle in the soil under agricultural ecosystems deserve a further attention to pay.

Key words: CO₂ concentration enrichment, Soil solution in the rice paddy field, Ca, Mg, Leaching