DOI: 10.13758/j.cnki.tr.2016.03.018

超声萃取-高效液相色谱测定土壤/沉积物中 1-羟基芘^①

干田田,迟杰*

(天津大学环境科学与工程学院,天津 300072)

摘 要:本文对超声萃取土壤/沉积物中 1-羟基芘(1-hydroxypyrene)的提取条件进行了优化研究,建立了一种超声萃取-高效液相色谱-荧光检测 1-羟基芘的方法。结果表明:甲醇和二氯甲烷的混合溶剂为最佳萃取溶剂;甲醇与二氯甲烷的体积比是影响萃取效率的主要因素。通过正交试验进一步确定了最佳提取条件为:甲醇/二氯甲烷体积比 35 65、土液比 2 g 10 ml、提取时间 20 min、提取次数 3 次。在最佳提取条件下,5 种不同类型的土壤/沉积物中 1-羟基芘的加标回收率数值变化范围很大($6.6\% \sim 83.3\%$),并且这种变化与样品的 pH 密切相关,而与样品总有机碳含量无关。

关键词:1-羟基芘;超声萃取;正交试验;pH

中图分类号: X502

多环芳烃(PAHs)是环境中普遍存在的持久性有机污染物。其中,微生物降解是去除环境中 PAHs 的主要途径。在细胞内色素 P450 氧化酶系统^[1]作用下,PAHs 可转化生成羟基代谢物(OH-PAHs)。较母体而言,OH-PAHs 的潜在毒性和致癌性更强^[2],而且 OH-PAHs 的存在还会显著抑制其他母体 PAHs 的降解^[3]。此外,OH-PAHs 可作为生物标志物来评价人体 PAHs 的近期暴露水平^[4]。因此,监测环境样品中的 OH-PAHs 十分重要。其中,1-羟基芘(1-hydroxypyrene)的研究最多,也是使用最广泛的生物标志物^[4]。例如,研究发现尿液中 1-羟基芘与人体暴露的 14 种 PAHs 均呈显著正相关关系^[5]。

土壤/沉积物中 OH-PAHs 分析方法的报道并不多,这主要是因为土壤/沉积物的基体复杂,使得样品中 OH-PAHs 的预处理过程比较复杂且回收率往往偏低 $^{[6]}$ 。王晓玮 $^{[7]}$ 采用快速溶剂萃取—分散相液液微萃取—气相色谱质谱联用仪(GC-MS)测定了底泥中 8种 OH-PAHs,方法检测限 $0.01 \sim 0.23~\mu g/kg$,回收率 $57.6\% \sim 91.1\%$, $RSD \leq 11.07\%$ 。 Baltrons 等 $^{[8]}$ 采用微波萃取和分子印迹多聚体的预处理方法—高效液相色谱配荧光检测器(HPLC-FLD)测定了土壤中 4种 OH-PAHs,方法检测限 $0.003 \sim 0.014~\mu g/kg$,回收率 $68\% \sim 93\%$, $RSD \leq 8\%$ 。由于上述文献中研究所采用的仪器比较昂贵,不是很普及,因此需要建立一个简

单、实用的测定土壤/沉积物中的 OH-PAHs 的方法。

超声提取法操作简单、省时、仪器价格低且溶剂用量较少,被广泛使用,但是未见超声法提取沉积物中 1-羟基芘的报道。本研究以 1-羟基芘为目标 OH-PAHs,建立了超声萃取-HPLC-FLD测定土壤/沉积物中 1-羟基芘的方法,研究了萃取溶剂和萃取条件对1-羟基芘回收率的影响,确定了最佳萃取条件。然后,利用建立的方法测定了不同类型土壤/沉积物中 1-羟基芘的回收率,分析了土壤/沉积物的性质对 1-羟基芘回收率的影响。

1 材料与方法

1.1 实验材料

1-羟基芘(98%)购自法国 Sigma Aldrich 公司;流动相甲醇为色谱纯(加拿大 Fisher Scientific 公司);水为 Milli-Q 超纯水;其余试剂均为分析纯。用丙酮配制 1 mg/L 的加标储备液;用甲醇配制标准曲线母液 1 mg/L,置于棕色瓶中 4 C 冰箱保存。

采集了 3 种沉积物(0~10 cm)样品和 2 种土壤样品。沉积物分别采自海河天津市区段(H)、天津大学敬业湖(J)、南开大学马蹄湖(M);土壤样品分别为江西鹰潭的红壤(R)和天津大港的碱土(S)。采集的样品冷冻干燥后,研磨过 80 目筛,备用。按文献[9]方法测定样品的基本理化性质,结果见表 1。

基金项目:国家自然科学基金项目(21377091)资助。

^{*} 通讯作者(cjiechi@163.com)

表 1 土壤/沉积物的理化特性

Table 1	Physical and chemical	l properties of soils/sediments
---------	-----------------------	---------------------------------

样品	pН	有机碳(g/kg)	砂粒/粉粒/黏粒(g/kg)
R	5.7	9.7	135/371/494
S	9.8	9.7	122/321/433
M	8.3	33.2	98/460/442
J	8.5	15.8	89/646/265
Н	7.5	18.6	63/726/211

1.2 样品的提取和分析

以海河天津市区段沉积物(H)作为实验沉积物进行超声提取条件的优化实验。首先进行萃取剂的选择,选择二氯甲烷、甲醇、丙酮和乙腈为萃取剂进行比较,确定最合适的溶剂。在此基础上,选取溶剂体积分数、土液比、超声时间和超声次数为考察因素,并根据单因素预实验结果,设计4因素3水平的正交试验,根据正交试验结果确定最佳提取条件。

提取方法: 取 2 g 海河沉积物(H)按照设定的萃取条件(萃取溶剂体积分数、土液比、萃取时间和萃取次数)进行超声提取,水温控制在 $20 \sim 30$ °C。超声提取后的溶液于 4 000 r/min 离心 15 min。合并提取液,旋转浓缩至约 1 ml,转移并定容至 2 ml。经 0.7 μ m 玻璃纤维滤膜(Whatman)过滤后,HPLC-FLD 测定。

提取液采用 Waters Alliance 2695 高效液相色谱仪分析。色谱仪配有荧光检测器和 C_{18} 柱。样品分析采用甲醇-水梯度洗脱,连续自动进样。柱温 40° C;自动进样量 20° μl;流动相为甲醇和水。流动相切换程序为 : $0\sim5$ min,甲醇 75%; $5\sim15$ min,甲醇 $75\%\sim85\%$; $15\sim20$ min,甲醇 $85\%\sim100\%$; $20\sim25$ min,甲

醇 100% ; $25 \sim 28$ min , 甲醇 $75\% \sim 100\%$; $28 \sim 33$ min , 甲醇 75%。整个过程的流速均为 0.6 ml/min。荧光检测器的激发波长和发射波长分别为 239 nm 和 392 nm。

1.3 质量控制与质量保证

所有数据都经过了严格的质量控制程序。对于样品分析,均运行溶剂空白和方法空白,以检查干扰和污染。沉积物和土壤的溶剂空白和方法空白中均没有检出目标化合物。采用标准曲线法对 1-羟基芘进行定量分析,峰面积(y, $\mu v\cdot s$)与浓度(x, $\mu g/L$)的线性回归方程:y=1.97x-1.16 $(R^2$ =0.9999)。 1-羟基芘保留时间 R_t =9.295 min。

2 结果与讨论

2.1 萃取溶剂的选择

根据相关研究^[8,10,11]选择 7 种溶剂或混合溶剂进行提取实验。提取条件为:提取剂 15 ml,超声时间 15 min,超声次数 3 次。实验结果如表 2 所示。可见,当萃取剂为甲醇和二氯甲烷的混合溶液时,回收率最高。这一结果可以用相似相容原理解释。由于酚羟基的存在,1-羟基芘的极性大于母体^[6,12],提取时应选择与之极性相似且能形成氢键的溶剂。表 2 中 4 种溶剂的极性大小顺序为:二氯甲烷 < 丙酮 < 甲醇 < 乙腈。二氯甲烷为弱极性溶剂,甲苯和乙腈的混合溶剂极性较强,并且这两种溶剂均不能形成氢键,因此回收率很低(<10%)。单独甲醇虽能与 1-羟基芘形成氢键,但是极性较高且黏度较大,回收率仅为 15.9%。将二氯甲烷与甲醇混合之后,可以同时降低溶剂的极性和黏度,回收率明显提高。因此,后续实验选择甲醇和二氯甲烷的混合溶剂进行提取剂的进一步优化。

表 2 不同提取溶剂下的 1-羟基芘回收率(%)

Table 2 Recovery percentage of 1-hydroxypyrene with different extraction solvents

加标浓度	度 提取溶剂						
(mg/kg)	二氯甲烷	甲醇/二氯甲烷	甲醇	丙酮/二氯甲烷	丙酮/二氯甲烷	丙酮	甲苯/乙腈
		(35:65, v/v)		$(1 \div 2, v/v)$	$(3 \div 2, v/v)$		(1:9,v/v)
0.2	7.5(6.4)	57.9(1.8)	15.9(8.7)	32.3(5.1)	46.3(1.6)	42.8(16.5)	3.4(9.6)

注:括号中的值为相对标准偏差 RSD。

2.2 超声提取条件的优化

以 1-羟基芘的提取量为考察目标,正交试验结果列于表 3 和表 4。表 3 中,极值 R 反映了各因素对回收率影响的主次顺序。可见,各因素对回收率的影响顺序为:甲醇体积分数>超声时间>土液比>超声次数。方差分析结果(表 4)显示,所选取的 4 个因素中,甲醇体积分数对提取率有显著影响(P<0.1),超声时间、土液比和超声次数的影响不显著。根据表 3 中 k

的最大值所对应的水平可以确定提取条件的优水平组合为 $A_2B_3C_3D_3$ 。

考虑到溶剂量大会造成污染,而且超声次数是影响回收率的次要因素,因此在优水平的基础上又进行了 $A_2B_2C_3D_2$ 的验证试验(即超声次数取 3 次,土液比 2g:10ml)。结果表明:超声 3 次时,回收率为 64.9% (RSD=9.01%),与超声 4 次时的回收率(65.8%, RSD=3.21%)相差不大。而且超声 3 次时 1-羟基芘提取量为

表 3 超声法提取 1-羟基芘的正交试验设计 L₉(3⁴)及结果

Table 3 Orthogonal experimental design L₉ (3⁴) and results of 1-hydroxypyrene by ultrasonic extraction

_							
	试验号	甲醇体积分数 A (%)	土液比 B(g: ml)	超声时间 C (min)	超声次数 D (次)	1-羟基芘提取量(μg/kg)	1-羟基芘回收率(%)
	1	20	2:5	10	2	77.3	37.7
	2	20	2:10	15	3	105.7	51.6
	3	20	2:15	20	4	127.5	62.3
	4	35	2:5	15	4	105.1	51.3
	5	35	2:10	20	2	122.3	59.7
	6	35	2:15	10	3	93.7	36.0
	7	50	2:5	2	3	53.7	24.7
	8	50	2:10	10	4	63.0	30.8
	9	50	2:15	15	2	83.5	40.8
	K_1	310.5	236.1	234.0	283.1	831.8	
	K_2	321.1	291.0	294.3	253.1		
	K_3	200.2	304.7	303.5	295.6		
	k_1	103.5	78.7	78.0	94.4		
	k_2	107.0	97.0	98.1	84.4		
	k_3	66.7	101.6	101.1	98.5		
_	R	40.3	22.9	23.2	14.2		

注:加标浓度为 0.2 mg/kg; $K_i(i=1,2,3)$ 表示任意列上水平号为 i 时所对应的提取量结果之和; $k_i(i=1,2,3)$ 是 $K_i(i=1,2,3)$ 的平均值; R 为极值。

表 **4** 方差分析表 Table 4 Analysis of variance

变异来源	离差平方和	自由度	均方	F 值	P
A	2 989.0	2	1 494.5	9.4	<0.1*
В	878.5	2	439.3	2.8	>0.1
C	950.5	2	475.2	3.0	>0.1
$\mathrm{D}^\blacktriangle$	317.9	2	158.9		
误差	317.9	2	158.9		
总变异	5674.2	8			

注: F_{0.05}(2, 2)=19, F_{0.1}(2, 2)=9, ▲表示误差项,*表示差异显著。

132.85 μg/kg,高于正交试验表中任何一种组合。 最终确定最佳的提取条件为:甲醇/二氯甲烷体积 比35:65、土液比2g:10 ml、超声时间20 min、 超声次数3次。

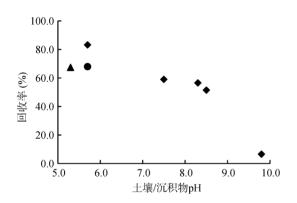
2.3 土壤/沉积物的性质对回收率的影响

按照最佳提取条件研究了土壤/沉积物的性质对回收率的影响,结果见表 5。可见,不同类型土壤/沉积物中 1-羟基芘的回收率值相差很大,其数值范围在 $6.6\% \sim 83.3\%$ 。其中,红壤 R 中 1-羟基芘的回收率最后。 其中,红壤 R 中 1-羟基芘的回收率最低。 王爱丽^[9]对酞酸酯的主要代谢物 MBP 和 MEHP 的研究中发现,其回收率随土壤/沉积物总有机碳含量的降低而明显增加。然而,本研究中红壤和碱土的总有机碳含量相同(表 1),这说明总有机碳对 1-羟基芘回收率

的影响不显著。值得注意的是,红壤和碱土的 pH 相差很大。碱土 pH 最高,为 9.8;红壤 pH 最低,为 5.7(表 1)。进一步的 Pearson 相关分析证实,1-羟基芘的回收率与土壤/沉积物 pH 呈显著负相关(r=-0.928, n=5, P=0.023),这可能是因为:1-羟基芘是弱酸,在酸性环境中以分子态形式存在。分子态 1-羟基芘在甲醇与二氯甲烷的混合溶剂中溶解度大,因此提取效率高。与此相反,在碱性环境中 1-羟基芘以离子态形式存在,在甲醇与二氯甲烷的混合溶剂中溶解度小,因而提取效率低。

付登强等^[13]的研究指出,土壤 pH 显著影响 PAHs 的去除,酸性条件下有利于高环 PAHs 的去除,中性条件下有利于低环 PAHs 的去除。究其原因,可能是,土壤 pH 既影响 PAHs 的化学行为,又影响土壤微生

表 5 超声提取各土壤/沉积物中 1-羟基芘的回收


Table 5	Recovery percentage of	1-hydroxynyrene from	different soils/sediments b	v ultrasonic extraction
Table 3	iccovery percentage or	1-II Y UI OA Y D Y I CIIC II OIII	difficient solis/scullicitis of	y unitasonic canaction

加标浓度			样品		
(mg/kg)	R	S	M	J	Н
0.02	83.3(3.0)	6.6(16.3)	56.6(4.4)	51.5(3.7)	59.0(6.6)

注:括号中的值是相对标准偏差 RSD。

物的群落结构和活性。该研究首次报道了 pH 对泥浆 反应去除土壤中 PAHs 的影响,但土壤/沉积物 pH 对 1-羟基芘回收率的影响,国内外还未见报道。

将文献值标记在图 1 中,与本研究结果进行比较。采用快速溶剂萃取-分散相液液微萃取-GC-MS法测定红树林底泥(pH 5.3)中 1-羟基芘,加标浓度 0.01~mg/kg,回收率为 $67.6\% \pm 11.1\%^{[7]}$;采用微波萃取和分子印迹多聚体的预处理方法测定淋溶的棕壤土(pH 5.7)中 1-羟基芘,加标浓度 0.2~mg/kg,回收率为 $68\% \pm 6\%^{[8]}$ 。对比可知,对于 pH 相近的土壤/沉积物,本研究中提取方法的回收率(83.3%)明显高于文献值。

(为本研究数据; ▲为文献[6]的数据; ●为文献[7]的数据) 图 1 1-羟基芘回收率与沉积物 pH 的关系 Fig. 1 Relationship between 1-hydroxypyrene recovery and sample pH

3 结论

- 1) 本研究建立了一种低成本、省时的超声萃取土壤/沉积物中 1-羟基芘的方法。最佳萃取条件为:提取剂为甲醇/二氯甲烷混合溶液(35:65, v/v), 土液比 $2g:10\,\mathrm{ml}$, 超声时间 $20\,\mathrm{min}$, 超声次数 $3\,\mathrm{x}$ 。其中,甲醇与二氯甲烷的体积比是影响萃取效率的主要因素。
- 2) 土壤/沉积物的 pH 对 1-羟基芘的回收率影响显著。pH 越低,1-羟基芘的回收率越高;酸性和弱碱性土壤/沉积物中 1-羟基芘的回收率可达 60% 以上。对于 pH 相近的土壤/沉积物,本研究建立的超声提取法的回收率明显高于文献值。

参考文献:

- [1] 吴宇澄,林先贵.多环芳烃污染土壤真菌修复进展[J]. 土壤学报,2013,50(6):1191-1199
- [2] Elovaara E, Väänänen V, Mikkola J. Simultaneous analysis of naphthols, phenanthrols, and 1-hydroxypyrene in urine as biomarkers of polycyclic aromatic hydrocarbon exposure: intraindividual variance in the urinary metabolite excretion profiles caused by intervention with b-naphthoflavone induction in the rat[J]. Archives of Toxicology, 2003, (77): 183–193
- [3] Kazunga C, Aitken M D. Products from the incomplete metabolism of pyrene by polycyclic aromatic hydrocarbondegrading bacteria[J]. Applied and Environmental Microbiology, 2000, 66(5): 1 917–1 922
- [4] Yamano Y, Hara K, Ichiba M, et al. Urinary 1-hydroxypyrene as a comprehensive carcinogenic biomarker of exposure to polycyclic aromatic hydrocarbons: a cross-sectional study of coke oven workers in China[J]. International Archives of Occupational and Environmental Health, 2014, 87(7): 705–713
- [5] 段小丽, 魏复盛, 张军锋, 等. 多环芳烃暴露评价的生物标志物研究[J]. 工业卫生与职业病, 2008(3): 129–133
- [6] Luan T, Fang S, Zhong Y, et al. Determination of hydroxy metabolites of polycyclic aromatic hydrocarbons by fully automated solid-phase microextraction derivatization and gas chromatography-mass spectrometry[J]. Journal of chromatography. A, 2007, 1173(1/2): 37–43
- [7] 王晓玮. 红树林底泥中多环芳烃代谢产物的分布及其微生物降解[D]. 广州: 中山大学, 2009
- [8] Baltrons O, Lopez-Mesas M, Palet C, et al. Molecularly imprinted polymer-liquid chromatography/fluorescence for the selective clean-up of hydroxylated polycyclic aromatic hydrocarbons in soils[J]. Analytical Methods, 2013, 5(22): 6 297–6 305
- [9] 王爱丽. 酞酸酯在湿地植物根际环境中的消减行为[D]. 天津: 天津大学, 2011
- [10] Arias L, Bauzá J, Tobella J, et al. A microcosm system and an analytical protocol to assess PAH degradation and metabolite formation in soils[J]. Biodegradation, 2008, 19(3): 425–434
- [11] Meyer S, Cartellieri S, Steinhart H. Simultaneous determination of PAHs, hetero-PAHs (N, S, O), and their degradation products in creosote-contaminated soils. Method development, validation, and application to hazardous waste sites[J]. Analytical Chemistry, 1999, 71(18): 4 023–4 029

- [12] Li K, Woodward L A, Karu A E, et al. Immunochemical detection of polycyclic aromatic hydrocarbons and 1-hydroxypyrene in water and sediment samples[J].
- Analytica Chimica Acta, 2000, 419(1): 1-8 [13] 付登强, 滕应, 骆永明, 等. 酸碱调控对泥浆反应去除土
- 壤中多环芳烃的影响研究[J]. 土壤, 2012, 44 (5): 794-800

Determination of 1-hydroxypyrene in Soil/Sediment by Ultrasonic Extraction-High Performance Liquid Chromatography

YU Tiantian, CHI Jie*

(Institute of Environmental Science and Technology, Tianjin University, Tianjin 300072, China)

Abstract: This study optimized the ultrasonic extraction conditions for 1-hydroxypyrene from soil/sediment, and established a method of ultrasonic extraction and high performance liquid chromatography with fluorescence detection for 1-hydroxypyrene. The results showed that: the mixed solvent of methanol and dichloromethane is the best extraction solvent; the volume ratio of methanol/dichloromethane is the key factor determining extraction efficiency. The optimal parameters determined by orthogonal experiment were: the volume ratio of methanol/dichloromethane 35:65, sample/solvent ratio 2 g:10 ml, extraction time 20 min, and repeated extraction three times. Under the optimal extraction conditions, recovery percentage of 1-hydroxypyrene in five types of soil/sediment changed in the range of 6.6% – 83.3%, and the change was closely related to the sample pH. The total organic carbon of the samples did not affect the recovery percentage of 1-hydroxypyrene.

Key words: 1-hydroxypyrene; Ultrasonic extraction; Orthogonal experiment; pH