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5.0 15.4 g/kg 0.9 g/kg 0.7 g/kg I m
8.9 g/kg 23 mg/kg 280 mg/kg
1.2 (kg/hm?)
(OF) 0
(BOF) (Phomopsis 1 25% 2
liquidambari)B3 1:10 25% ~50% 3
50% ~75% 4
1.3 1ol
2011 %) = Z(ﬁﬁﬁﬂiiﬁzxﬁ%ﬁﬁ@xloo
5a 3 4 TR A B RE o R R AR AE
(CK) 300 kg/hm? 750 kg/hm? 1.4.3
KCI 225 kg/hm’ 15 kg/hm? OF BOF (iodonitrotetrazolium chloride INT)
OF BOF 13 ODye4 0.01
3 000 kg/hm? 15 kg/hm? 141 20 min
CK 10mx5m [15] ODss4 0.01
5 4 8
1.4.4
1.4 PCR DNA
14.1 2016 DNA (Fast
DNA SPIN for Soil Kit MP ) DNA
2 4°C =25°C PCR 1
DNA 10
14.2 3 Imx 6~38
%£1 LAEE PCRIIYK qPCR &4
Table 1  Primers used for quantitative real-time PCR (qPCR) and qPCR conditions
qPCR
338F/518R 95C30s 95C5s 57.5C30s 72°C30s 40 [20]
ITS1F/ITS4 95C30s 95T5s 56TC30s 72°C30s 40 [20]
S-P-Acti-1154-a-S-19/S-P-Acti-1339-a-A-18 95 C30s 95TC5s 59TC30s 72°C20s 40 [21]
BKH812F/BKH1249R 95C30s 95T5s 60C60s 40 [22]
Pse435F/Pse686R 95°C30s 95C5s 60TC60s 40 [23]
B-K1-F/B-K1-R1 95°C30s 94°C30s 63°C30s 72°C60s 40 [24]
Fa/Ra 95C30s 95TC5s 57C60s 72°C60s 40 [25]
R.soll/R.sol2 94 C4min 94°C30s 63°C30s 40 [26]
1.5 752%( 1)
Microsoft Excel 2013 CK
SPSS 16.0 160.3% 252.9%
Duncan 23.8% 47.9%
(P 0.05)
2.2
2 CK
2.1
(CK) ( 2
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Fig. 1 Effects of organic fertilizers on root nodules (A), pod yield (B) and disease index (C) of peanut under monoculture
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Fig. 2 Effects of organic fertilizers on activities of dehydrogenase (A), catalase (B) and phenol oxidase (C) in peanut
rhizosphere soil under monoculture
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Fig. 3 Effects of organic fertilizers on abundances of bacterial (A) and fungal (B) in peanut rhizosphere soil under monoculture
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Fig. 4 Effects of organic fertilizers on abundance of representative beneficial microorganisms in peanut rhizosphere soil under monoculture
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Fig. 5 Effects of organic fertilizers on abundance of Fusarium spp. (A)and Ralstonia solanacearum(B)in peanut rhizosphere soil under monoculture
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Effects of Successive Application of Organic Fertilizers on
Rhizosphere Microbial Populations and Enzyme Activities of
Monoculture Peanut

LIU Jinguang'”, LI Xiaogang', WANG Xingxiang'*
(1 Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences,

Nanjing 210008, China; 2 University of Chinese Academy of Sciences, Beijing 100049, China; 3 Experimental Station of Red
Soil, Chinese Academy of Sciences, Yingtan, Jiangxi 335211, China)

Abstract: Continuous peanut planting leads to the prevalence of soilborne diseases, and constitutes a serious constraint to
the yield and quality. To investigate the biocontrol effects of organic fertilizers on suppressing the soilborne diseases and possible
mechanisms, a 6 year field experiment was conducted to study the effects of successive application of chemical fertilizer, organic
fertilizer and bioorganic fertilizer (organic fertilizer inoculated with Phomopsis liquidambari B3) on the peanut root rot disease
and on the abundance of group specific rhizosphere microbes and enzyme activities. Compared with the single application of
chemical fertilizer, successive application of organic fertilizer and bioorganic fertiliaer could effectively control the soilborne
diseases, and increased the peanut pod yields by 23.8% and 47.9%, respectively. organic fertilizer and bioorganic fertiliaer
applications enhanced the activities of catalase, dehydrogenase and phenol oxidase in rhizosphere soil. The quantitative real-time
PCR analysis further detected an increase of the bacterial and fungal abundance, indicating an increase in the soil microbial
activities. organic fertilizer and bioorganic fertiliaecr applications also promoted the growth of the beneficial rhizosphere
microorganisms, including Actinobacteria increased 0.9-and 1.6—fold, Pseudomonas increased 10.9-and 13.1-fold, Burkholderia
increased 2.6-and 1.9—fold, and Bacillus increased 1.1-and 2.1-fold, respectively. However, no significant difference was
observed on the abundance of major pathogenic microorganisms, such as Fusarium and Ralstonia solanacearum, two notorious
pathogenic microorganisms of peanut between treatments. The above results indicated that successive application of organic
fertilizers, especially bioorganic fertiliaer, can control the prevalence of soilborne diseases by increasing the number of beneficial
rhizosphere microorganisms and manipulating the soil microbiome to increase soil health.

Key words: Continuous peanut production; Organic fertilizer; Beneficial microorganism; Soilborne diseases
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