DOI: 10.13758/j.cnki.tr.2024.01.020

葛昶, 田晓庆, 于福荣, 等. 锰氧化物对土壤中三氯生的化学氧化. 土壤, 2024, 56(1): 155-162.

锰氧化物对土壤中三氯生的化学氧化^①

葛 昶^{1,2},田晓庆²,于福荣^{1*},刘松韬¹,王星皓^{2*},高 娟²

(1 华北水利水电大学地球科学与工程学院,郑州 450046; 2 土壤与农业可持续发展重点实验室(中国科学院),南京 210008)

摘 要:本文选取江西鹰潭红壤、云南金墩红壤和河南封丘潮土,研究了农田土壤中三氯生(TCS)在有无锰氧化物下的降解过程, 考察锰氧化物浓度和有机酸种类及浓度对 TCS 降解率的影响,并通过高效液相-飞行时间质谱仪分析 TCS 的降解产物,探讨 TCS 在土壤中被活性锰氧化物氧化降解的过程。结果表明: 锰氧化物在 3 种不同类型土壤中均具有不同程度的 TCS 去除能力,水土 比 4:1条件下,5g/L 的 MnO₂在酸性土壤(江西鹰潭红壤)中对 TCS 的氧化能力最强,云南金墩红壤土壤次之,这说明锰氧化物的 氧化能力与土壤 pH 呈负相关性。同时 TCS 的降解率随着土壤中锰氧化物的浓度增加而增加,当土壤中锰氧化物的浓度升高到 50 g/L 时,TCS 在 8 h 内的降解率达到 81%,其一级反应动力学常数与锰氧化物浓度之间具有线性相关性。土壤中小分子有机酸能够影响 TCS 的降解效率,其中高浓度草酸和柠檬酸对 TCS 的降解具有明显抑制作用;而酒石酸则相反。此外,在反应过程中检测到 TCS 聚合形成的二聚体产物,并在此基础上提出了氧化转化路径。以上结果为理解 TCS 在土壤中的衰减和转化提供了新的视野,也为 氯酚类污染场地修复提供了理论支撑。

关键词:三氯生;土壤环境;锰氧化物;转化机理;降解产物

中图分类号: X53 文献标志码: A

Chemical Oxidation of Triclosan in Soil by Manganese Oxides

GE Chang^{1,2}, TIAN Xiaoqing², YU Furong^{1*}, LIU Songtao¹, WANG Xinghao^{2*}, GAO Juan²

(1 College of Geosciences and Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450046, China; 2 Key Laboratory of Soil and Sustainable Agriculture, Chinese Academy of Sciences, Nanjing 210008, China)

Abstract: In this paper, red soil samples from Yingtan, Jiangxi and Jindun, Yunnan and alluvial soil samples from Fengqiu, Henan were collected to investigate the degradation of triclosan (TCS) in agricultural soils in the presence or absence of manganese oxides. The effects of manganese oxide concentration and organic acid types and concentration on TCS degradation were also investigated. The degradation products of TCS were analyzed by HPLC-TOF-MS to explore the oxidative degradation of TCS by reactive manganese oxides in soil. The results showed that MnO_2 could oxidize TCS in varying degrees in three different soil types at a water-soil ratio of 4 : 1, and the strongest oxidation capacity of TCS was observed in acidic soil (red soil from Yingtan, Jiangxi), followed by red soil from Jindun, Yunnan. It indicated that the oxidation capacity of MnO_2 was negatively correlated with soil pH. In addition, the degradation rate of TCS increased with the increasing concentration of manganese oxides in soil, and the degradation rate of TCS reached 81% within 8 h at 50 g/L MnO_2 . There was a linear correlation between the kinetic constants of the first-order reaction and the concentrations of manganese oxides. The presence of small organic acids, such as oxalic and citric acids, significantly inhibited the degradation of TCS, but tartaric acid promoted it. In addition, the oxidative polymerizations pathway of TCS were proposed based on the detected dimers products. This study provided a new vision for understanding the attenuation and remediation of TCS in contaminated soil.

Key words: Triclosan; Soil environment; Manganese oxides; Transformation mechanism; Degradation products

①基金项目:国家自然科学基金重大研究计划项目(41991331)、国家自然科学基金面上项目(42177030)和江苏省自然科学基金项目 (BK20201509)资助。

^{*} 通讯作者(yufurong@ncwu.edu.cn; wangxh@issas.ac.cn)

作者简介: 葛昶(1996一), 男, 河南郑州人, 硕士研究生, 主要研究方向为土壤与地下水污染修复。E-mail: gc069896@163.com

壤

三氯生(Triclosan, TCS)是常见的广谱抗菌剂, 因其脂溶性强,易穿透细胞膜,对真菌、酵母菌和病 毒等具有高效的抑杀作用,因此十几年来经常被添加 讲各种药品和个人护理产品中,如牙膏、抗菌皂、洁 面乳和洗衣液[1-2]。这些污染物会随着人类活动进入 到固废或水体中,最终进入到污水处理厂,但由于目 前污水处理工艺无法完全去除 TCS, 而残留的 TCS 会在土壤中不断累积,对生态系统造成潜在威胁^[3]。 2017年美国食品及药物管理局开始限制 TCS 的广泛 使用^[4]。尽管如此,TCS 在多种介质如土壤^[5]、沉积 物^[6]、地下水^[7]甚至生物体^[8]中仍有大量检出,其带 来的环境问题不容忽视。已有研究表明, TCS 在农 田土壤中的暴露会对微生物群落和植物产生毒害 作用^[9],并且通过食物链累积和接触暴露对人体的内 分泌系统和细胞 DNA 造成损伤^[10-11],对土壤生态系 统和人类健康造成极大威胁。因此,研究农田土壤中 TCS 转化及其污染土壤的修复至关重要。

铁锰氧化物广泛存在于土壤环境中,对环境中污 染物的迁移和转化具有重要的作用和意义^[12]。其中 锰氧化物作为重要的活性物质,具有表面积大(50~ 300 m²/g)、氧化还原电位高(1.23 V)、表面活性高等 特性,是土壤氧化物的重要组成部分,特别是在我国 南方红壤地区,其含量在土壤组成中占比极大^[13]。 以往的研究表明, 锰氧化物对环境中的多种有机污染 物,如氯酚^[14]、苯胺^[15],以及含酚羟基的抗生素和 激素等药物[16-17]具有氧化去除作用。目前,新污染物 对土壤健康的影响受到了极大关注,然而土壤介质中 有机污染的转化研究相对较少。因此,开展土壤中锰 氧化物与有机污染物之间的界面反应机理的研究,利 用土壤中广泛存在的天然锰氧化物修复污染土壤提 高土壤自身治污能力[18]具有重要的现实意义,应用 前景也将远远超过传统的污染土壤治理措施。基于 此,本文研究了不同土壤类型条件下 pH、锰氧化物 浓度和小分子有机酸对农田土壤中TCS降解的影响, 提出了 TCS 在锰氧化物作用下的降解机制以及转化 路径, 以期为 TCS 污染土壤的修复提供理论依据和 技术支持。

1 材料与方法

1.1 试剂与仪器

实验材料:三氯生(TCS,97%)为分析纯,购自 上海阿拉丁;甲醇和丙酮均为液相色谱纯;亚硝酸钠、 高锰酸钾、硝酸锰、草酸、酒石酸、柠檬酸、甲酸等 均为分析纯;实验用水均为 Milli-Q 超纯水。

实验仪器:高效液相色谱仪(HPLC-2030, Shimadzu);双层往复恒温振荡仪(HZ-2610K,上海佐研仪器科技有限公司);原子吸收光谱仪(Z-2000, Hitachi);高效液相色谱-飞行时间质谱联用仪(HPLC-QTOF-MS, SCIEX)。

1.2 供试土壤

供试土壤分别采自于江西鹰潭市、云南金墩乡和河 南封丘市的稻田,3种土壤的pH、有机质含量和铁锰金 属浓度等信息详见表1。土壤风干、磨碎处理后,用丙 酮配置2g/L的TCS储备液,取一定量的储备液在有机 溶剂的辅助下与土壤混匀,配置成50mg/kg的TCS模 拟污染土样,自然风干、老化2周后过60目筛备用。

1.3 锰氧化物的制备

选取土壤中常见的 δ 型锰氧化物(δ -MnO₂)进行 研究,其制备流程如下^[19]:250 mL 的 0.15 mmol/L Mn (NO₃)₂·4H₂O 溶液在蠕动泵作用下以 20 mL/min 的速 度泵入 250 mL 的 0.1 mmol/L KMnO₄和 0.2 mmol/L NaOH 的混合溶液中,在添加过程中和之后的 24 h 内持续以 600 r/min 速度搅拌; 然后将混合溶液离心, 离心所得沉淀物用蒸馏水和乙醇洗涤数次,直至滤出 液 pH 为中性;将洗涤后的样品晾干水分,放入真空 冷冻干燥机中干燥 48 h 后用研钵研磨,过 60 目细筛 后密封保存待用。

通过环境扫描电镜(SU8220, Hitachi)和 X 射线 衍射仪(Ultima IV, Rigaku)对合成的锰氧化物进行表 征分析。

Table 1 Physiochemical properties of tested soils									
供试土壤	pН	有机质(g/kg)	阳离子交换量(cmol/kg)	全氮(g/kg)	无机碳(g/kg)	全 Fe (g/kg)	全 Mn(g/kg)		
江西鹰潭红壤	4.74	19.59	12.81	1.13	0.65	42.53	0.06		
云南金墩红壤	5.93	34.22	30.25	2.14	0.50	72.40	2.17		
河南封丘潮土	8.34	17.55	10.01	1.11	7.50	11.94	0.47		

表1 供试土壤的理化性质

1.4 试验设计

1.4.1 TCS 的降解动力学

称取质量为 0.05 g 左

右的锰氧化物加入到含有 0.5 g 污染土壤样品和 2 mL 去离子水(土水比为 1:4)的棕色玻璃瓶中(土壤悬液 中锰氧化物和 TCS 的浓度分别为 25 g/L 和 12.5 mg/L), 盖上带有聚四氟乙烯内衬的瓶盖。预先将玻璃瓶充分 混匀,以 80 Hz 频率下超声 3 min,使锰氧化物均匀 分散在土壤悬液中。随后将反应瓶放置于恒温摇床, 保持 25 ℃、150 r/min,避光振荡 8 h。每个样品设 置 2 个平行,分别在 0.5、1、2、4、8 h 对土壤中 TCS 进行全提,即向土壤悬液中加入 5 mL 甲醇振荡,然 后在 80 Hz 的频率下超声辅助提取 5 min,取出 1 mL 样品以 15 000 r/min 离心 2 min,过 0.22 µm 的滤膜后 进行 TCS 浓度分析,上述方法测得的 TCS 回收率为 93%±1%。

参照上述试验方法,将不同反应时间段的样品以 3 500 r/min 离心 5 min,过 0.22 μm 的滤膜后收集到 5 mL 离心管中,加入一滴硝酸酸化后,采用火焰原 子法测定不同样品中 Mn²⁺ 的浓度。

1.4.2 环境因素影响 1)不同土壤类型对 TCS 降 解的影响。称取质量为 0.5 g 不同供试土壤置于 8 mL 标色玻璃瓶中, 添加 2 mL 超纯水和 0.05 g MnO₂。试 验设定 TCS 的初始浓度为 12.5 mg/L, 锰氧化物的初 始浓度为 25 g/L。

2) 锰氧化物浓度对 TCS 降解的影响:称取质量 为 0.5 g 江西鹰潭红壤置于 8 mL 棕色玻璃瓶中,添 加 2 mL 超纯水和不同质量的 MnO₂。试验设定 TCS 的初始浓度为 12.5 mg/L, 锰氧化物的初始浓度为 5、 10、25 和 50 g/L。

3)有机酸种类和浓度对 TCS 降解的影响: 配制 100 mmol/L 3 种农田常见的有机酸(酒石酸、柠檬酸、 草酸)溶液,称取质量为 0.5 g 江西鹰潭红壤置于 8 mL 棕色玻璃瓶中, 添加 2 mL 超纯水、0.05 g MnO₂ 和不 同体积的有机酸溶液。试验设定 TCS 的初始浓度为 12.5 mg/L, 锰氧化物的初始浓度为 25 g/L, 不同有机 酸溶液的初始浓度为 1、5、10 mmol/L。

反应试验和TCS的提取测定方法均参照1.4.1节。 1.5 分析方法

1.5.1 TCS 分析 从土壤中提取的 TCS 浓度采用 高效液相色谱仪测定, HPLC 条件: 色谱柱为 C18 柱(4.6 mm×150 mm, 5 µm), 流动相为甲醇/0.1% 甲酸 = 85/15(*V*/*V*), 流速为 1.0 mL/min, 检测波长为 275 nm, 柱温为 30 ℃, 在此条件下, TCS 的保留时 间为 7.9 min。

通过一级反应动力学方程描述前2h反应过程中 TCS的降解:

 $\ln(C_t/C_0) = -k_{\rm obs} \times t$

式中: C₁ 和 C₀ 分别表示 t 时刻和 0 时刻 TCS 的浓度

(mmol/L), k_{obs} 是伪一级动力学常数(h⁻¹), 表示 TCS 的降解速率。

1.5.2 TCS 降解产物分析 为鉴定土壤中 TCS 的转化产物,采用减压旋蒸法对样品进行浓缩纯化。取出反应后的土壤冻干后置于 8 mL 的玻璃瓶中,加入 5 mL 甲醇溶液,置于超声波提取仪中超声 1 h,然后 在转速 5 000 r/min条件下离心 10 min后收集上清液, 重复提取 2 次。将提取液在旋转蒸发仪上浓缩至小于 1 mL,用甲醇定容,超声溶解 10 min,过 0.22 μm 有机滤膜后,采用 HPLC-TOF-MS 定性分析产物。

HPLC-TOF-MS 条件: 色谱柱为 C18 柱(2.1 mm × 100 mm),载气为高纯氮气,50 kPa: 流动相由 0.1% 甲酸溶液(A 相)和甲醇(B 相)组成,采用梯度洗脱的方式,梯度洗脱从 90% 的 A 开始,持续 2 min, 然后线性将 A 降低到 10%,再持续 1 min,保持 23 min, 然后在 1 min 内恢复到初始条件,接着进行 2 min 的 平衡。采用电喷雾电离(ESI)在负离子模式下进行扫 描,扫描范围 *m/z* 为 60~800。

2 结果与讨论

2.1 锰氧化物材料表征

锰氧化物的扫描电镜和 XRD 图谱如图 1 所示。 根据扫描电镜的结果可知,合成的锰氧化物为絮状结构。XRD 图谱中,在 2 θ 为 37°和 68°处出现了明显的特征衍射峰,与黄成等^[20]和 Sun 等人^[19]报道的结果一致,表明制备得到的产物为 δ-MnO₂,其结晶度较差,为无定形态。

2.2 不同土壤中 TCS 降解差异

江西鹰潭红壤、云南金墩红壤和河南封丘潮土的 pH分别为4.74、5.93和8.34(表1)。如图2所示,TCS 在不同土壤中8h的降解率分别为67%、30%和 11%。该结果表明不同类型土壤中降解效率差异显 著,并且TCS在土壤中的降解效率与土壤pH呈负相 关性,即随着土壤pH的升高,其明显抑制锰氧化物 对TCS的氧化降解作用。这主要是由于TCS的存在 形态和锰氧化物表面带电性质均受pH的影响^[21],从 而产生不同的降解效果。

据报道^[22], 锰氧化物在酸性条件下具有较高的氧 化活性,其标准氧化还原电位为 1.23 V,但随着 pH 的 升高,其氧化活性逐渐减弱,从而导致了 TCS 在不同 pH 的土壤中降解效率具有明显的差异。此外,pH 也会 影响锰氧化物和 TCS 的表面电位,从而改变二者的 表面络合物的状态和电子转移速率,影响氧化还原过 程^[23]。δ-MnO₂零电点 pH_{pzc} 为 2.25,当环境 pH>2.25 时,其表面带负电荷,并且随着 pH 的升高其负电性也 随之增强^[24]。由于 TCS 在环境中主要以去质子化的形

式存在^[25], pH 的升高使得 TCS 和锰氧化物之间在静电 作用下的斥力增强,从而抑制了 TCS 的降解效率^[26]。

图 1 锰氧化物扫描电镜图和 XRD 图谱 Fig.1 SEM image and X-ray diffraction pattern of manganese oxide

2.3 锰氧化物添加量对 TCS 降解的影响

上述结果表明锰氧化物在江西鹰潭红壤中对 TCS 有显著的降解作用,因此后续将以鹰潭红壤作为 主要供试土壤研究锰氧化物浓度的影响。TCS 的降解 动力学曲线如图 3A 所示,在未添加 MnO₂的对照组 中,土壤介质中 TCS 的浓度随时间没有明显的变化, 说明供试土壤中锰矿物浓度不足以有效降解 TCS。但 在添加 MnO₂后,TCS 的降解速率随着 MnO₂浓度的 增加逐渐提升,当 MnO₂浓度为 5 g/L 时,TCS 在 8 h 的降解率仅为 22%,进一步增加 MnO₂浓度至 50 g/L 时,TCS 的降解率高达 81%。一级反应动力学方程 可以较好地描述反应初期 MnO₂对 TCS 的降解作用 (表 2),在锰氧化物浓度从 5 g/L 增加到 50 g/L 的过 程中,一级动力学速率常数从 0.062 3 h⁻¹增加到 0.525 2 h⁻¹。将不同浓度 MnO₂ 与一级反应速率常数进行拟 合,结果如图 3B 所示,二者之间存在明显的线性关 系, 拟合方程为: $k_{obs} = 0.0102[MnO_2] + 0.0314$ 。 尽管反应初期 TCS 的浓度迅速下降, 但其降解速率 在 2 h 后明显减慢,当 MnO₂ 的浓度为 25 g/L 时, TCS 的降解率在前 2 h 内达到 50%, 但在随后的 6 h 内 TCS 的降解率仅为 17%。以往研究报道发现锰氧化物氧化 四环素类^[27]、磺胺类^[28]和苯酚^[17, 29]等有机化合物时 也出现了类似的反应动力学特征。这可能与锰氧化物 降解有机物的机理有关, 即锰氧化物氧化 TCS 的过 程是首先 TCS 和 MnO₂形成表面络合物, 随后 TCS 分子和锰氧化物之间以电子转移方式形成降解产物 和 Mn^{2+[26, 30]}。随着反应的进行, TCS 的降解产物和 MnO₂ 的还原产物 Mn²⁺ 吸附到了 MnO₂ 表面, 减少 了 TCS 在 MnO₂ 表面的反应活性位点, 从而抑制了 后续 TCS 降解效率。

为了进一步确认锰氧化物的化学氧化作用,测定 了土壤悬液中 Mn^{2+} 的含量变化。如图 4 所示,在 Soil 和 Soil(TCS)的对照组中, Mn^{2+} 的浓度几乎不变;在 Soil添加 MnO_2 的一组中, Mn^{2+} 的浓度在反应 8 h 后, 相对于对照组增加了 62.4 μ g/L,说明锰氧化物与土 壤中还原性物质发生反应导致了 Mn^{2+} 的释放;另外 在 Soil(TCS)添加 MnO_2 组别中,相对于土壤中含 MnO_2 而不含 TCS 组别,其 Mn^{2+} 浓度在 8 h 后增加 了 156.3 μ g/L,而增加的 Mn^{2+} 浓度则是由 MnO_2 与 TCS 反应所产生的。

2.4 小分子有机酸对 TCS 降解的影响

土壤环境中存在着大量溶解性有机质,其中小分子有机酸是一类活性较强的有机物质^[31],如草酸、 酒石酸和柠檬酸等,能够还原和溶解 MnO₂^[32],对 MnO₂降解有机污染物的效率有一定影响^[33-34]。有机

图 3 TCS 在不同 MnO₂ 浓度下的降解动力学(A)和 MnO₂ 浓度与一级反应速率常数的相关性(B) Fig. 3 Degradation kinetics of TCS at different MnO₂ concentrations(A) and relationship between MnO₂ concentration and first-order reaction rate constants (B)

表 2	不同锰氧化物浓度下 TCS 降解一级动力学
Table 2	First order kinetics of TCS degradation at different \mbox{MnO}_2

concentrations								
MnO_2	一级动力	降解率						
(g/L)	$k_{\rm obs}({\rm h}^{-1})$	R^2	(%)					
5	0.062 3	0.878 9	22					
10	0.133 2	0.902 8	40					
25	0.322 9	0.945 7	67					
50	0.525 2	0.882 9	81					

图 4 不同处理土壤中 Mn²⁺ 浓度的变化情况 Fig. 4 Changes of Mn²⁺ concentrations under different treatments

酸种类和浓度对 TCS 的影响如图 5 所示, 草酸和柠檬酸在 1 mmol/L 时,一定程度上促进了 TCS 的降解, 这可能与 MnO₂与有机酸反应生成 Mn(III)-有机酸配 合物有关^[35], Huang 等人^[36]提出 Mn(III) 可以促进 MnO₂与污染物之间的电子转移而加速污染物的降 解。但是,高浓度的有机酸则明显抑制了 MnO₂ 对 TCS 的降解作用,并且随着浓度的增加抑制效果越明 显。以往的研究表明^[37-38], 过量的有机酸会与 MnO₂ 反应生成 Mn²⁺, 从而占据 MnO₂ 表面的吸附位点抑 制污染物的降解,并且有机酸对抗生素的抑制作用会随着有机酸浓度的增加而增强。酒石酸对 TCS 降解的影响与柠檬酸和草酸不同,TCS 在 1 mmol/L 酒石酸参与下的降解率仅为 56%,并且其降解率会随着酒石酸的浓度升高而增强。这可能是由于酒石酸的结构使其难以络合 Mn(III),低浓度的酒石酸无法与 MnO₂反应生成足量的 Mn(III)—有机酸配合物而抑制 TCS的降解^[35],而随着浓度的升高,则促使更多的 MnO₂转化为 Mn(III)。

图 5 小分子酸种类和浓度对 TCS 降解效率的影响 Fig.5 Effects of small molecule acid types and concentrations on TCS degradation efficiency

2.5 TCS 降解产物的分析

本试验利用甲醇从土壤中提取 TCS 反应 8 h 后的 产物进行液相色谱-飞行时间质谱分析,用以探究 TCS 的降解产物。测定采取负离子模式,检测到的离子为 [M-H]⁻型,在物质的质荷比(*m*/*z*)数值上加一个质子可 推知其相对分子质量。通过分析,检测到了 5 个主要 产物,其质谱图如图 6 所示,图 6A 为 TCS 母体(*m*/*z* = 288.9)提取的离子流谱图,图 6B 为从 m/z = 574.9 处提 取的离子流谱图,结合二级质谱图 6C 可以进一步确 定 TCS 的降解产物为二聚体,并且未检测到其他转化 产物。因此我们推断 TCS 的转化途径如图 6D 所示, 酚羟基被 Mn⁴⁺氧化失去一个电子形成苯氧自由基, 随后苯氧自由基通过羟基邻位、对位 C-C 键或 C-O 键耦合生成 5 个不同结构的二聚体^[17]。尽管之前的研 究发现 TCS 在 MnO₂ 作用下的降解产物除了二聚体产 物,还有被氧化形成的对苯醌和断裂醚键的产物^[39], 但由于其浓度极低,因此在本次试验中未能检测到。

图 6 TCS 的提取峰(A)、降解产物的提取峰(B)、降解产物的二级质谱图(C)和 TCS 的降解产物及其转化路径(D) Fig.6 Extraction peaks of TCS(A), extraction peaks of degradation products (B), secondary mass spectra of degradation products (C) and degradation products of TCS and their transformation pathways (D)

3 结论

1)不同类型土壤中锰氧化物对 TCS 的降解效率 主要受土壤 pH 的影响。不同 pH 会直接影响锰氧化 物的氧化还原电位,促使其在酸性条件下具有较高的 氧化活性。

2)TCS 的降解速率随着锰氧化物添加量的增加 而增大,其降解动力学常数与锰氧化物的浓度成正 比,同时土壤中 Mn²⁺ 随着反应的进行而快速地释放, 表明该降解反应是一个氧化还原反应。

3)不同有机酸对 TCS 降解效率影响不同,随着 有机酸浓度的升高,草酸和柠檬酸对 TCS 的降解效 率从促进转为抑制,而酒石酸则从抑制转为促进。

4)通过对 TCS 的降解产物进行分析,发现降解 产物主要以二聚体为主,其反应途径为三氯生的酚羟 基被锰氧化物剥夺失去一个电子形成苯氧自由基,进 一步发生自耦合反应。

参考文献:

- Halden R U, Paull D H. Co-occurrence of triclocarban and triclosan in U.S. water resources[J]. Environmental Science & Technology, 2005, 39(6): 1420–1426.
- [2] Yee A L, Gilbert J A. Microbiome is triclosan harming your microbiome?[J]. Science, 2016, 353(6297): 348–349.
- [3] Oh S, Choi D, Cha C J. Ecological processes underpinning microbial community structure during exposure to subinhibitory level of triclosan[J]. Scientific Reports, 2019, 9: 4598.
- [4] Adhikari S, Kumar R, Driver E M, et al. Mass trends of parabens, triclocarban and triclosan in Arizona wastewater collected after the 2017 FDA ban on antimicrobials and during the COVID-19 pandemic[J]. Water Research, 2022, 222: 118894.
- [5] Chen Y S, Shi R, Luo H J, et al. Alkali-catalyzed hydrothermal oxidation treatment of triclosan in soil: Mechanism, degradation pathway and toxicity evaluation[J]. Science of the Total Environment, 2023, 856: 159187.
- [6] Liang Y, Song H, Wu Y, et al. Occurrence and distribution of triclosan and its transformation products in Taihu Lake, China[J]. Environmental Science and Pollution Research, 2022, 29(56): 84787–84797.
- [7] Milanović M, Đurić L, Milošević N, et al. Comprehensive insight into triclosan-from widespread occurrence to health outcomes[J]. Environmental Science and Pollution Research International, 2023, 30(10): 25119–25140.
- [8] Pycke B F G, Roll I B, Brownawell B J, et al. Transformation products and human metabolites of triclocarban and triclosan in sewage sludge across the United States[J]. Environmental Science & Technology, 2014, 48(14): 7881–7890.

- [9] 刘欣雨,张建强,黄雯,等.中国土壤中抗生素赋存特征与影响因素研究进展[J].土壤,2021,53(4):672-681.
- [10] Prins G S. Endocrine disruptors and prostate cancer risk[J]. Endocrine Related Cancer, 2008, 15(3): 649–656.
- [11] 李林朋,马慧敏,胡俊杰,等.三氯生和三氯卡班对人 体肝细胞 DNA 损伤的研究[J]. 生态环境学报, 2010, 19(12): 2897-2901.
- [12] 汤艳杰, 贾建业, 谢先德. 铁锰氧化物在污染土壤修复 中的作用[J]. 地球科学进展, 2002, 17(4): 557-564.
- [13] 于天仁. 水稻土的物理化学[M]. 北京: 科学出版社, 1983.
- [14] 徐仁扣,刘志光. 土壤中的氧化锰对酚类化合物的氧化 降解作用[J]. 土壤学报, 1995, 32(2): 179–185.
- [15] Zhao L, Yu Z Q, Peng P A, et al. Oxidation kinetics of pentachlorophenol by manganese dioxide[J]. Environmental Toxicology and Chemistry, 2006, 25(11): 2912–2919.
- [16] Wang X H, Wang S Y, Qu R J, et al. Enhanced removal of chlorophene and 17β-estradiol by Mn(III) in a mixture solution with humic acid: Investigation of reaction kinetics and formation of co-oligomerization products[J]. Environmental Science & Technology, 2018, 52(22): 13222– 13230.
- [17] Ge C, Wang X H, Yu F R, et al. Mechanistic insight into manganese oxidation induced by sulfite under aerobic condition: Implication of triclosan degradation[J]. Separation and Purification Technology, 2023, 306: 122583.
- [18] 鲁安怀. 矿物学研究从资源属性到环境属性的发展[J]. 高校地质学报, 2000, 6(2): 245-251.
- [19] Sun Q A, Cui P X, Wu S, et al. Role of reduced sulfur in the transformation of Cd(II) immobilized by δ-MnO₂[J]. Environmental Science & Technology, 2020, 54(23): 14955–14963.
- [20] 黄成,姜理英,陈建孟,等. δ-MnO₂/水界面 17β-雌二醇 的氧化转化[J]. 环境科学, 2009, 30(8): 2271–2276.
- [21] Sun K, Li S Y, Waigi M G, et al. Nano-MnO₂-mediated transformation of triclosan with humic molecules present: Kinetics, products, and pathways[J]. Environmental Science and Pollution Research, 2018, 25(15): 14416– 14425.
- [22] Wang Z M, Giammar D E. Metal contaminant oxidation mediated by manganese redox cycling in subsurface environment[M]//ACS Symposium Series. Washington, DC: American Chemical Society, 2015: 29–50.
- [23] 陈高,赵玲,董元华.二氧化锰氧化降解金霉素的动力 学研究[J].环境科学,2009,30(9):2773-2778.
- [24] Rubert, Pedersen J A. Kinetics of oxytetracycline reaction with a *Hydrous* manganese oxide[J]. Environmental Science & Technology, 2006, 40(23): 7216–7221.
- [25] Jiang J, Pang S Y, Ma J. Oxidation of triclosan by permanganate (Mn(VII)): Importance of ligands and *in situ* formed manganese oxides[J]. Environmental Science & Technology, 2009, 43(21): 8326–8331.

- [26] Barrett K A, McBride M B. Oxidative degradation of glyphosate and aminomethylphosphonate by manganese oxide[J]. Environmental Science & Technology, 2005, 39(23): 9223–9228.
- [27] Chen W R, Huang C H. Transformation kinetics and pathways of tetracycline antibiotics with manganese oxide[J]. Environmental Pollution, 2011, 159(5): 1092– 1100.
- [28] Gao J A, Hedman C, Liu C, et al. Transformation of sulfamethazine by manganese oxide in aqueous solution[J]. Environmental Science & Technology, 2012, 46(5): 2642– 2651.
- [29] Zhang S, Hedtke T, Wang L, et al. Engineered nanoconfinement accelerating spontaneous manganesecatalyzed degradation of organic contaminants[J]. Environmental Science & Technology, 2021, 55(24): 16708– 16715.
- [30] Lu K, Huang Q G, Wang P, et al. Physicochemical changes of few-layer graphene in peroxidase-catalyzed reactions: Characterization and potential ecological effects[J]. Environmental Science & Technology, 2015, 49(14): 8558–8565.
- [31] Strobel B W. Influence of vegetation on low-molecularweight carboxylic acids in soil solution—a review[J]. Geoderma, 2001, 99(3/4): 169–198.

- [32] Zhu L J, Cheng H, Ma J F, et al. Decolorization of methyl orange by MnO₂/organic acid system: The role of Mn(III)[J]. Materials Research Bulletin, 2020, 122: 110670.
- [33] Saha S, Pal A. Microporous assembly of MnO₂ nanosheets for malachite green degradation[J]. Separation and Purification Technology, 2014, 134: 26–36.
- [34] Shi Z Y, Zhang J, Zhu L. Role of oxalate in permanganate oxidation of 4-chlorophenol[J]. Chemosphere, 2018, 203: 117–122.
- [35] Sun S Y, Wang Y H, Zhou L, et al. Enhanced degradation mechanism of tetracycline by MnO₂ with the presence of organic acids[J]. Chemosphere, 2022, 286: 131606.
- [36] Huang J Z, Zhong S F, Dai Y F, et al. Effect of MnO₂ phase structure on the oxidative reactivity toward bisphenol A degradation[J]. Environmental Science & Technology, 2018, 52(19): 11309–11318.
- [37] Klausen J, Haderlein S B, Schwarzenbach R P. Oxidation of substituted anilines by aqueous MnO₂: effect of co-solutes on initial and quasi-steady-state kinetics[J]. Environmental Science & Technology, 1997, 31(9): 2642–2649.
- [38] Xu L, Xu C, Zhao M R, et al. Oxidative removal of aqueous steroid estrogens by manganese oxides[J]. Water Research, 2008, 42(20): 5038–5044.
- [39] 李媛, 魏东斌, 杜宇国. 锰氧化物对有机污染物的转化 机制研究进展[J]. 环境化学, 2013, 32(7): 1288-1299.