基于RUSLE模型的黄河流域山西段土壤侵蚀变化与驱动因子
作者:
作者单位:

1.山西农业大学;2.大同市规划设计研究总院有限责任公司;3.中国林业科学研究院林业研究所

中图分类号:

S157

基金项目:

山西省研究生实践创新项目(2023SJ125)


CHANGES OF SOIL EROSION BASED ON RUSLE MODEL AND DRIVING FACTORS IN SHANXI SECTION OF THE YELLOW RIVER BASIN
Author:
Affiliation:

1.Shanxi Agricultural University;2.Datong Plan&3.Design Institute;4.Institute of Forestry, Chinese Academy of Forestry Sciences

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [46]
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    本研究基于降水数据、土壤类型数据、数字高程模型数据(DEM)、植被覆盖指数(NDVI),分析降雨侵蚀力(R)、土壤可蚀性(K)、地形因子(D)、植被覆盖因子(C)和水土保持措施因子(P),利用修正通用土壤流失方程(RUSLE)对2000—2020年黄河流域山西段土壤侵蚀的时空分布格局进行研究,识别高侵蚀强度区域的区位特征;并使用地理探测器模型揭示影响土壤侵蚀强度分布格局的主要成因以及因素间耦合关系的定量归因。结果表明:(1)2000—2020年期间,黄河流域山西段的土壤侵蚀呈减弱态势,由2000年的31.29t/(hm2·a)降至2020年的25.67t/(hm2·a),呈现出东南弱西北强的空间分异特征;(2)栽培植被是影响土壤侵蚀的主要植被类型,土地利用/覆盖类型为草地或未利用地、海拔639~932m、坡度5°~8°和植被覆盖度30%~45%是土壤侵蚀主要发生源地;(3)驱使黄河流域山西段土壤侵蚀格局形成的多个因素中,植被覆盖度始终起主导作用;两两因素之间交互协同作用表现为双因子增强或者非线性增强,植被覆盖度和坡度交互作用最大。因此,黄河流域山西段在进行土壤侵蚀防治和生态保护与修复时,应优先考虑植被覆盖度为30%~45%且坡度在5°~8°的区域。

    Abstract:

    Based on precipitation data, soil type data, digital elevation model data (DEM), and vegetation coverage index (NDVI), this study analyzes rainfall erosivity (R), soil erodibility (K), terrain factors (D), and vegetation coverage factors (C) and soil and water conservation measure factors (P), use the Revised Universal Soil Loss Equation (RUSLE) to study the temporal and spatial distribution pattern of soil erosion in the Shanxi section of the Yellow River Basin from 2000 to 2020, and identify the location characteristics of high erosion intensity areas; and A quantitative attribution study using the geographical detector model to reveal the main causes that affect soil erosion intensity distribution patterns and coupling relationships between factors. The results show that: (1) During 2000—2020, soil erosion in Shanxi section of the Yellow River Basin showed a weakening trend, which declined from 31.29 t/(hm2·a) in 2000 to 25.67 t/(hm2·a) in 2020 and showed spatial differentiation characteristics of weak in the southeast and strong in the northwest; (2) Cultural vegetation is the main vegetation type that affects soil erosion. The land use/cover type of grassland or unused land, the altitude of 639~932 m, the slope of 5°~8°, and the vegetation coverage of 30%~45% are the main source of soil erosion; (3) Among the multiple factors that drive the formation of soil erosion patterns in the Shanxi section of the Yellow River Basin, vegetation coverage always plays a leading role; the interaction and synergy between the two factors manifests as double—factor enhancement or nonlinear enhancement, with vegetation coverage and slope having the largest interaction. Therefore, when carrying out soil erosion prevention and ecological protection and restoration in the Shanxi section of the Yellow River Basin, priority should be given to areas with vegetation coverage of 30%~45% and slopes of 5°~8°.

    参考文献
    [1] Wuepper D, Borrelli P, Finger R. Countries and the global rate of soil erosion[J]. Nature Sustainability, 2020, 3: 51-55.
    [2] 彭世想, 郭相秦, 刘卓, 等. 马莲河流域水沙变化与水土保持成效分析[J]. 中国水土保持, 2020(11):29-31+48+27.
    [3] 陈正发, 李靖, 段青松, 等. 基于USLE模型的云南省坡耕地土壤侵蚀和养分流失评价[J]. 农业工程学报, 2022, 38(16): 124-134.
    [4] 张郝哲, 许圣强, 彭妮, 等. 基于RUSLE模型的河南省登封市土壤侵蚀定量评估研究[J]. 中国水土保持, 2023(11): 34-39.
    [5] Ganasri B P, Ramesh H. Assessment of soil erosion by RUSLE model using remote sensing and GIS - A case study of Nethravathi Basin[J]. Geoscience Frontiers, 2016, 7(6): 953-961.
    [6] Bayouli O T, Zhang W, Bayouli H T. Combining RUSLE model and the vegetation health index to unravel the relationship between soil erosion and droughts in southeastern Tunisia[J]. 干旱区科学:英文版, 2023(11): 1269-1289.
    [7] 王婷, 陆忠军, 宁静, 等. 基于RUSLE的黑土区典型县域土壤侵蚀时空变化特征研究[J]. 水土保持通报, 2023, 43(5): 227-234.
    [8] 樊杰, 王亚飞, 王怡轩. 基于地理单元的区域高质量发展研究——兼论黄河流域同长江流域发展的条件差异及重点[J]. 经济地理, 2020, 40(1):1-11.
    [9] 王艳芬, 陈怡平, 王厚杰, 等. 黄河流域生态系统变化及其生态水文效应[J]. 中国科学基金, 2021, 35(4):520-528.
    [10] 张蕾, 张凤荣, 李超, 等. 土壤侵蚀作用对黄土高原黏化层鉴定和淋溶土分类的影响[J]. 土壤通报, 2021, 52(2): 261-268.
    [11] 何维灿, 赵尚民, 王睿博, 等. 基于GIS和CSLE的山西省土壤侵蚀风险研究[J]. 水土保持研究, 2016, 23(3): 58-64.
    [12] 邓景成, 高鹏, 穆兴民, 等. 黄土高原退耕还林工程对生态环境的影响及对策建议[J]. 水土保持研究, 2017, 24(5): 63-68.
    [13] 穆兴民, 顾朝军, 孙文义, 等. 植被恢复改变黄土高原产流模式问题初探[J]. 人民黄河 2019, 41(10):31-39.
    [14] Wang H, Zhao H. Dynamic changes of soil erosion in the Taohe River basin using the RUSLE model and google earth engine[J]. Water, 2020, 12(5): 1293.
    [15] Chi W, Zhao Y, Kuang W, et al. Impact of Cropland Evolution on Soil Wind Erosion in Inner Mongolia of China[J]. Land, 2021, 10(6):583.
    [16] Liu W, Liu J, Kuang W. Spatio-temporal characteristics of soil protection efforts of the Grain for Green Project in northern Shaanxi Province[J]. Journal of Geographical Sciences, 2020, 30: 401-422.
    [17] Li H, Guan Q, Sun Y, et al. Spatiotemporal analysis of the quantitative attribution of soil water erosion in the upper reaches of the Yellow River Basin based on the RUSLE-TLSD model[J]. Catena, 2022, 212: 106081.
    [18] Ren Z, Tian Z, Wei H, et al. Spatiotemporal evolution and driving mechanisms of vegetation in the Yellow River Basin, China during 2000–2020[J]. Ecological Indicators, 2022, 138: 108832.
    [19] Kirkby M J, Abrahart R, McMahon M D, et al. MEDALUS soil erosion models for global change[J]. Geomorphology, 1998, 24: 35-49.
    [20] Wischmeier W H, Smith D D. Predicting rainfall erosion losses: a guide to conservation planning[M]. Washington, District of Columbia USA: U. S. Department of Agriculture Science and Education Administration, 1978, (537): 285-291.
    [21] Renard K G, Foster G R, Weesies G A, et al. Predicting Soil Erosion by Water: a guide to conservation planning with the Revised Universal Soil Loss Equation(RUSLE) [M]. Washington: United States Department of Agriculture(USDA), Agricultural handbook, 1997, (703): 253-324.
    [22] Williams J R, Renard K G, Dyke P T. EPIC: a new method for assessing erosion’s effect on soil productivity[J]. Journal of Soil
    [23] 付兴涛, 张丽萍. 坡长对红壤侵蚀影响人工降雨模拟研究[J]. 应用基础与工程科学学报, 2015, 23(3): 474-483.
    [24] Wang T. Land use and sandy desertification in the North China[J]. Journal of Desert Research, 2000, 20(2): 103-107.
    [25] 杨勤科. 泛第三极(20国)坡度坡长因子数据集(2020年, 7.5弧秒分辨率)[DS]. 国家青藏高原科学数据中心, 2021, https://data.tpdc.ac.cn/en/data/3551c528-bafd-450f-962f-7abd0505ddc0/.
    [26] 蔡崇法, 丁树文, 史志华, 等. 应用USLE和地理信息系统IDRISI预测小流域土壤侵蚀量的研究[J]. 水土保持学报, 2000, 14(2): 19-24.
    [27] 闫瑞, 张晓萍, 李够霞, 等. 基于RUSLE的北洛河上游流域侵蚀产沙模拟研究[J]. 水土保持学报, 2017, 31(4): 32-37.
    [28] 张卓佩, 牛健植, 樊登星, 等. 黄河中游多沙粗沙区土壤水蚀时空变化及动态驱动力分析[J]. 水土保持学报, 2024, 38(2).
    [29] 王劲峰, 徐成东. 地理探测器:原理与展望[J]. 地理学报, 2017(1), 72: 116-134.
    [30] 王彬, 郑粉莉, Romkens M. 水蚀过程的土壤可蚀性研究述评[J]. 水土保持研究 2013, 20(1): 277-286.
    [31] 马道铭, 回毅滢, 赵炯昌, 等. 近60年山西省降雨侵蚀力时空变化特征[J]. 水土保持研究, 2023, 30(6): 24-31, 48.
    [32] 宁婷, 桑满杰, 郭新亚, 等. 山西省2000—2016年降雨侵蚀力时空分布特征[J]. 中国水土保持科学, 2020, 18(1): 1-7.
    [33] 林慧龙, 郑舒婷, 王雪璐. 基于RUSLE模型的三江源高寒草地土壤侵蚀评价[J]. 草业学报, 2017, 26(7): 11-22.
    [34] 宁婷, 郭新亚, 荣月静, 等. 基于RUSLE模型的山西省生态系统土壤保持功能重要性评估[J]. 水土保持通报, 2019, 39(6): 205-210.
    [35] 张岩, 刘宝元, 史培军, 等. 黄土高原土壤侵蚀作物覆盖因子计算[J]. 生态学报, 2001(7):1050-1056.
    [36] 王猛, 王鹤松, 姜超, 等. 基于RUSLE和地理探测器模型的西南地区土壤侵蚀格局及定量归因[J]. 应用基础与工程科学学报, 2021, 29(6): 1386-1402.
    [37] 陈朝良, 赵广举, 穆兴民, 等. 基于RUSLE模型的湟水流域土壤侵蚀时空变化[J]. 水土保持学报, 2021, 35(4): 73-79.
    [38] 贾磊, 姚顺波, 邓元杰, 等. 渭河流域土壤侵蚀时空特征及其地理探测[J]. 生态与农村环境学报, 2021, 37(3): 305-314.
    [39] Yan R, Zhang X, Yan S, et al. Estimating soil erosion response to land use/cover change in a catchment of the Loess Plateau, China[J]. International Soil and Water Conservation Research, 2018, 6(1): 13-22.
    [40] 吴树荣, 潘换换, 姬倩倩, 等. 基于生态系统服务的山西黄河流域保护优先区识别[J]. 生态学报, 2022, 42(20): 8126-8137.
    [41] 尹作堂, 常军. 2000—2020年黄河流域土壤侵蚀及其驱动因素分析[J]. 西安理工大学学报, 2023, 39(3): 360-368.
    [42] Wang J F, Li X H, Christakos G, et al. Geographical detectors-based health risk assessment and its application in the neural tube defects study of the Heshun Region, China[J]. International Journal of Geographical Information Science, 2010, 24(1/2): 107-127.
    [43] Wang Y, Niu F, Wu Q, et al. Assessing soil erosion and control factors by radiometric technique in the source region of the Yellow River, Tibetan Plateau[J]. Quaternary Research, 2014(3), 81:538-544.
    [44] 张艳, 史飞航, 张悦, 等. 黄河中游土壤侵蚀时空变化及驱动因素[J]. 水土保持研究, 2023, 30(5):1-12.
    [45] Sun W, Shao Q, Liu J, et al. Assessing the effects of land use and topography on soil erosion on the Loess Plateau in China[J]. Catena, 2014, 121: 151-163.
    [46] 杨严攀, 田培, 沈晨竹, 等. 基于RUSLE模型和地理探测器的鄂西南土壤侵蚀脆弱性评价[J]. 水土保持学报, 2023, 38(1): 1-13.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:22
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2024-03-14
  • 最后修改日期:2024-08-08
  • 录用日期:2024-08-19
文章二维码