土壤剖面养分特征与小麦产量对生物炭施用的响应研究
作者:
作者单位:

南京林业大学水土保持学院/南方现代林业协同创新中心

中图分类号:

S606

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目)


Responses of soil profile nutrient characteristics and wheat yield to biochar application
Author:
Affiliation:

Co-Innovation Center for Sustainable Forestry in Southern China/College of Soil and Water Conservation,Nanjing Forestry University

Fund Project:

The National Natural Science Foundation of China (General Program, Key Program, Major Research Plan)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [46]
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    不同用量生物炭(biochar,BC)施用对土壤剖面养分特征的影响尚不明确。本研究通过盆栽试验考察200 kg/hm2供氮(N)时以0.5和1.5 wt%(0~20 cm耕层干土重百分比)用量施用BC对土壤剖面肥力指标、小麦产量和N素利用率(NUE)的影响。结果表明:BC施用可提高0~40 cm土壤有机碳含量(其中0~10 、20~30 cm剖面增幅达21.1~44.2%、12.6~18.4%),且该效应与BC用量呈正相关。相较仅供N处理,BC添加处理的0~10 cm土壤铵态N、硝态N、全N和速效钾(K)含量提高了3.7~49.0%、20.1~23.7%、3.4~16.7%和3.6~14.8%,且30~40 cm剖面速效K含量也显著提高10.2~19.7%。除铵态N外,各养分含量的增幅在高用量(1.5 wt%)添加BC处理更大。但30~40 cm土壤铵态N和20~30 cm土壤速效K含量均因BC添加而降低,降幅分别为27.4~32.8%和10.8~12.6%,且在BC低用量(0.5 wt%)时降幅更显著。BC对小麦NUE和产量无显著影响,但存在降低小麦产量的趋势(风险)。综上,土壤剖面养分特征对BC添加的响应因其用量和土层深度不同而具有显著差异。

    Abstract:

    The effects of biochar (BC) application with varied rates on soil profile nutrient characteristics were not clear. In this study, we conducted a pot experiment to investigate the effects of BC added at 0.5 wt% and 1.5 wt% on soil profile nutrient characteristics, wheat yield and nitrogen (N) utilization efficiency (NUE) under conventional N input rate (200 kg/hm2). The results showed that the 0~40 cm soil organic carbon (SOC) contents increased after BC application and was positively correlated with BC application rate. Of which, the SOC contents of 0~10 cm and 20~30 cm soil layers under BC-amended treatment were with significant increases of 21.1~44.2% and 12.6~18.4%, respectively. Compared with N fertilizer alone treatment, BC-amended treatments increased ammonium N (3.7~49.0%), nitrate N (20.1~23.7%), total N (3.4~16.7%), and available potassium (K) (3.6~14.8%) contents of the 0~10 cm soil. In addition, the available K contents of the 30~40 cm soil were significantly increased with BC application by 10.2~19.7%. Generally, the increases of each nutrient content were higher under 1.5 wt% BC amending treatment, except for ammonium N. However, BC addition reduced the ammonium N of 30~40 cm soil and available K of 20~30 cm soil by 27.4~32.8% and 10.8~12.6%, respectively, and the effects were more significant at lower BC added (0.5wi%) treatment. BC had no significant effect on either wheat NUE or production, but performed a reduction potential (risk) on wheat production. In conclusion, responses of the soil nutrients to BC addition significantly varied with its application rates and soil profile depth.

    参考文献
    [1] Zhang X, Pei G, Sun J, et al. Responses of soil nitrogen cycling to changes in aboveground plant litter inputs: A meta-analysis[J]. Geoderma, 2023, 439: 116678.
    [2] Zhou J, Gu B, Schlesinger W H, et al. Significant accumulation of nitrate in Chinese semi-humid croplands[J]. Scientific reports, 2016, 6(1): 25088.
    [3] Reay D S, Davidson E A, Smith K A, et al. Global agriculture and nitrous oxide emissions[J]. Nature climate change, 2012, 2(6): 410-416.
    [4] Robertson G P, Bruulsema T W, Gehl R J, et al. Nitrogen-climate interactions in US agriculture[J]. Biogeochemistry, 2013, 114: 41-70.
    [5] Yang Y, Liu L, Zhang F, et al. Enhanced nitrous oxide emissions caused by atmospheric nitrogen deposition in agroecosystems over China[J]. Environmental Science and Pollution Research, 2021, 28: 15350-15360.
    [6] 何绪生, 耿增超, 佘雕, 等. 生物炭生产与农用的意义及国内外动态[J]. 农业工程学报, 2011, 27(2): 1-7.
    [7] 李力, 刘娅, 陆宇超, 等. 生物炭的环境效应及其应用的研究进展[J]. 环境化学, 2011, 30(8): 1411-1421.
    [8] 武玉, 徐刚, 吕迎春, 等. 生物炭对土壤理化性质影响的研究进展[J]. 地球科学进展, 2014, 29 (1): 68-79.
    [9] Ali M A, Kim P J, Inubushi K. Mitigating yield-scaled greenhouse gas emissions through combined application of soil amendments: a comparative study between temperate and subtropical rice paddy soils[J]. Science of the Total Environment, 2015, 529: 140-148.
    [10] 袁帅, 赵立欣, 孟海波, 等. 生物炭主要类型、理化性质及其研究展望[J]. 植物营养与肥料学报, 2016, 22(5): 1402-1417.
    [11] 杨放, 李心清, 王兵, 等. 生物炭在农业增产和污染治理中的应用[J]. 地球与环境, 2012, 40(1): 100-107.
    [12] Marmo L. EU strategies and policies on soil and waste management to offset greenhouse gas emissions[J]. Waste Management, 2008, 28(4): 685-689.
    [13] 方圆, 冯浩, 操信春, 等. 活性炭对土壤入渗、蒸发特性及养分淋溶损失的影响[J]. 水土保持学报, 2011, 25(6): 23-26.
    [14] 陈义群, 董元华. 土壤改良剂的研究与应用进展[J]. 生态环境, 2008, 3: 1282-1289.
    [15] Chen M, Chen X, Xu X, et al. Biochar colloids facilitate transport and transformation of Cr (VI) in soil: Active site competition coupling with reduction reaction[J]. Journal of Hazardous Materials, 2022, 440: 129691.
    [16] Xue P, Hou R, Fu Q, et al. Potentially migrating and residual components of biochar: Effects on phosphorus adsorption performance and storage capacity of black soil[J]. Chemosphere, 2023, 336: 139250.
    [17] 刘飞, 张民, 诸葛玉平, 等. 马铃薯玉米套作下控释肥对土壤养分垂直分布及养分利用率的影响[J]. 植物营养与肥料学报, 2011, 17(6): 1351-1358.
    [18] 李娟, 彭金灵, 康娟, 等. 减施氮肥对稻田土壤剖面养分分布特征的影响[J]. 热带作物学报, 2012, 33(8): 1378-1383.
    [19] 田昌, 周旋, 谢桂先, 等. 控释尿素减施对双季稻田土壤剖面养分分布特征的影响[J]. 水土保持学报, 2018, 32(4): 216-221.
    [20] 尚杰, 耿增超, 陈心想, 等. 施用生物炭对旱作农田土壤有机碳、氮及其组分的影响[J]. 农业环境科学学报, 2015, 34(3): 509-517.
    [21] 陈芳, 张康康, 谷思诚, 等. 不同种类生物质炭及施用量对水稻生长及土壤养分的影响[J]. 华中农业大学学报, 2019, 38(5): 57-63.
    [22] 陈心想, 何绪生, 耿增超, 等. 生物炭对不同土壤化学性质、小麦和糜子产量的影响[J]. 生态学报, 2013, 33(20): 6534-6542.
    [23] 陈温福, 张伟明, 孟军. 农用生物炭研究进展与前景[J]. 中国农业科学, 2013, 46(16): 3324-3333.
    [24] Sun H, Zhang H, Wu J, et al. Laboratory lysimeter analysis of NH3 and N2O emissions and leaching losses of nitrogen in a rice-wheat rotation system irrigated with nitrogen-rich wastewater[J]. Soil science, 2013, 178(6): 316-323.
    [25] Zhao X, Wang J, Wang S, et al. Successive straw biochar application as a strategy to sequester carbon and improve fertility: A pot experiment with two rice/wheat rotations in paddy soil[J]. Plant and soil, 2014, 378: 279-294.
    [26] 鲍士旦. 土壤农化分析(第3版)[M]. 北京: 中国农业出版社, 2002: 25-113.
    [27] Fan Y C, Shi Y, Yu Z W, et al. Difference of nitrogen accumulation and translocation of wheat varieties with different yield potential[J]. J. Triticeae Crops, 2021, 41: 1496-1502.
    [28] 巨晓棠, 谷保静. 我国农田氮肥施用现状、问题及趋势[J]. 植物营养与肥料学报, 2014, 20(04): 783-795.
    [29] 郑文波, 王仕琴, 刘丙霞, 等. 基于RZWQM模型模拟太行山低山丘陵区农田土壤硝态氮迁移及淋溶规律[J]. 环境科学, 2019, 40(4): 1770-1778.
    [30] Ahmed R, Li Y, Mao L, et al. Biochar effects on mineral nitrogen leaching, moisture content, and evapotranspiration after 15N urea fertilization for vegetable crop[J]. Agronomy, 2019, 9(6): 331.
    [31] 刘玉学, 刘微, 吴伟祥, 等. 土壤生物质炭环境行为与环境效应[J]. 应用生态学报, 2009, 20(04): 977-982.
    [32] 宋大利, 习向银, 黄绍敏, 等. 秸秆生物炭配施氮肥对潮土土壤碳氮含量及作物产量的影响[J]. 植物营养与肥料学报, 2017, 23(02): 369-379.
    [33] Yan S, Niu Z, Yan H, et al. Biochar application significantly affects the N pool and microbial community structure in purple and paddy soils[J]. PeerJ, 2019, 7: e7576.
    [34] Chen P, Liu Y, Mo C, et al. Microbial mechanism of biochar addition on nitrogen leaching and retention in tea soils from different plantation ages[J]. Science of The Total Environment, 2021, 757: 143817.
    [35] Zhang M, Liu Y, Wei Q, et al. Biochar enhances the retention capacity of nitrogen fertilizer and affects the diversity of nitrifying functional microbial communities in karst soil of southwest China[J]. Ecotoxicology and Environmental Safety, 2021, 226: 112819.
    [36] Morales M M, Comerford N, Guerrini I A, et al. Sorption and desorption of phosphate on biochar and biochar–soil mixtures[J]. Soil Use and Management, 2013, 29(3): 306-314.
    [37] Schneider F, Haderlein S B. Potential effects of biochar on the availability of phosphorus—mechanistic insights[J]. Geoderma, 2016, 277: 83-90.
    [38] 张珂珂, 宋晓, 郭斗斗, 等. 生物炭对潮土土壤肥力特征和氮肥利用效率的影响[J]. 河南农业科学, 2022, 51(12): 73-80.
    [39] 张维理, Kolbe H, 张认连. 土壤有机碳作用及转化机制研究进展[J]. 中国农业科学, 2020, 53(2): 317-331.
    [40] 罗梅, 田冬, 高明, 等. 紫色土壤有机碳活性组分对生物炭施用量的响应[J]. 环境科学, 2018, 39(9): 4327-4337.
    [41] Dai W, Gao H, Sha Z, et al. Changes in soil organic carbon fractions in response to wheat straw incorporation in a subtropical paddy field in China[J]. Journal of Plant Nutrition and Soil Science, 2021, 184(2): 198-207.
    [42] Liang B, Lehmann J, Sohi S P, et al. Black carbon affects the cycling of non-black carbon in soil[J]. Organic Geochemistry, 2010, 41(2): 206-213.
    [43] Tammeorg P, Simojoki A, M?kel? P, et al. Short-term effects of biochar on soil properties and wheat yield formation with meat bone meal and inorganic fertiliser on a boreal loamy sand[J]. Agriculture, Ecosystems Environment, 2014, 191: 108-116.
    [44] He E, Yang Y, Xu Z, et al. Two years of aging influences the distribution and lability of metal (loid) s in a contaminated soil amended with different biochars[J]. Science of the total environment, 2019, 673: 245-253.
    [45] 孙海军, 闵炬, 施卫明, 等. 硝化抑制剂施用对水稻产量与氨挥发的影响[J]. 土壤, 2015, 47(6): 1027-1033.
    [46] 柳瑞, 高阳, 李恩琳, 等. 减氮配施生物炭对水稻生长发育、干物质积累及产量的影响[J]. 生态环境学报, 2020, 29(5): 926-932.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:9
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2024-06-08
  • 最后修改日期:2024-08-17
  • 录用日期:2024-08-26
文章二维码