团聚体粒径分布对土壤导热率的影响
作者:
作者单位:

1.江苏省农业科学院农业资源与环境研究所/农业农村部江苏耕地保育科学观测实验站/国家农业环境六合观测实验站;2.江苏省沿江地区农业科学院

中图分类号:

S152

基金项目:

江苏省重点研发计划(BE2021378);江苏省卓越博士后计划(2022ZB762);科研基础调研专项(2021FY100504)


Effect of soil aggregate fractions on thermal conductivity
Author:
Affiliation:

1.Institute of Agricultural Resource and Environment,Jiangsu Academy of Agricultural Sciences/Scientific Observing and Experimental Station of Arable Land Conservation Jiangsu/ National Agricultural Experimental Station for Agricultural Environment Luhe;2.Jiangsu Yanjiang Institute of Agricultural Sciences

Fund Project:

Key Research and Development Program of Jiangsu Province (BE2021378),Jiangsu Funding Program for Excellent Postdoctoral Talent (22ZB762), National Science & Technology Fundamental Resources Investigation Project of China (2021FY100504)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [35]
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    本研究采用室内模拟试验,利用热脉冲技术测定大(0.25 ~ 2 mm)、中(0.053 ~ 0.25 mm)、小(< 0.053 mm)团聚体6种配比(100-0-0、0-100-0、0-0-100、50-25-25、25-50-25、25-25-50)的土壤导热率,研究不同团聚体粒径分布下土壤导热率的变化特征。结果表明,含大、中团聚体比例高的干土导热率显著高于含小团聚体比例高的土壤,50-25-25或25-50-25团聚体配比的非饱和土壤导热率和导热率变化速率最低。土壤有机质含量随含中团聚体比例增加而增加。干土导热率与小团聚体比例呈显著线性负相关,土壤导热率变化速率与大、中团聚体比例存在一元二次关系、与有机质含量呈线性负相关。本研究为农田土壤导热率影响因素提供新思路。

    Abstract:

    In this study, a laboratory experiment was conducted to analyze the variation characteristics of soil thermal conductivity (λ) under different soil aggregate fractions. λ were measured for six proportions of large (0.25 ~ 2 mm), medium (0.53 ~ 0.25 mm), and small (< 0.053 mm) aggregates (100-0-0, 0-100-0, 0-0-100, 50-25-25, 25-50-25, and 25-25-50) by using a double-needle heat-pulse probe and time-domain reflectometer technique. Results showed that the λ of soils with a high proportion of large and medium aggregates was significantly lower than that of soils with high proportions of small aggregates; the λ of unsaturated soil and the change rate of λ with aggregate proportions of 50-25-25 or 25-50-25 was the lowest. Soil organic matter content was higher with increasing medium aggregate content. Regression analysis showed a significant linear negative correlation between the λ of dry soil and the proportion of soil small aggregates; a quadratic relationship between the change of λ and the proportion of large or middle aggregates and a negative correlation with soil organic matter content. These findings provide a new idea for the study of factors affecting the λ of farmland soil.

    参考文献
    [1] . Usowicz B, Lipiec J. The effect of exogenous organic matter on the thermal properties of tilled soils in Poland and the Czech Republic[J]. Journal of Soil and Sediments 2019, 20(1):365-379.
    [2] . Xiu L, Zhang W, Wu D, Sun Y, Zhang H, Gu W, Meng J, Chen W. Heat Storage Capacity and Temporal-spatial Response in the Soil Temperature of Albic Soil Amended with Maize-derived Biochar for 2 Years[J]. Soil and Tillage Research 2021, 205.
    [3] . Haque MA, Ku S, Haruna S. Soil thermal properties: influence of no-till cover crops[J]. Canadian journal of Soil Science 2024, .
    [4] . He H, He D, Jin J, Smits KM, Dyck M, Wu Q, Si B, Lv J. Room for improvement: A review and evaluation of 24 soil thermal conductivity parameterization schemes commonly used in land-surface, hydrological, and soil-vegetation-atmosphere transfer models[J]. Earth-Science Reviews 2020, 211:103419
    [5] . Abu-Hamdeh NH, Reeder RC. Soil thermal conductivity: Effects of density, moisture, salt concentration, and organic matte[J]r. Soil Science Society America Journal 2000, 64(4):1285-1290.
    [6] . 王月月, 任图生. 玉米农田行尺度土壤热特性变异特征及其对土壤含水量和温度的响应[J]. 土壤 2024, 56(2):415-424.
    [7] . Fu Y, Ghanbarian B, Horton R, Heitman J. New insights into the correlation between soil thermal conductivity and water retention in unsaturated soils[J]. Vadose Zone Journal 2023, 23(1):2037504.
    [8] . 刘亚龙, 王萍, 汪景宽. 土壤团聚体的形成和稳定机制:研究进展与展望[J]. 土壤学报 2023, 60(3):627–643.
    [9] . Singh N, Kumar S, Udawatta R, Anderson S, de Jonge L, Katuwal S. X-ray micro-computed tomography characterized soil pore network as influenced by long-term application of manure and fertilizer[J]. Geoderma 2021, 385(1):114872.
    [10] . Yudina A, Kuzyakov Y. Dual nature of soil structure: The unity of aggregates and pores[J]. Geoderma 2023, 434:116478.
    [11] . Tian SY, Zhu BJ, Yin R, Wang MW, Jiang YJ, Zhang CZ, Li DM, Chen XY, Kardol P, Liu MQ. Organic fertilization promotes crop productivity through changes in soil aggregation[J]. Soil Biology and Biochemistry 2022, 165:108533.
    [12] . 荣慧, 房焕, 张中彬, 蒋瑀霁, 赵旭, 单军, 彭新华, 孙波, 周虎. 团聚体大小分布对孔隙结构和土壤有机碳矿化的影响[J]. 土壤学报 2022, 59(02):476-485.
    [13] . Usowicz B, Lipiec J, Usowicz JB, Marczewski W. Effects of aggregate size on soil thermal conductivity: Comparison of measured and model-predicted data[J]. International Journal of Heat and Mass Transfer 2013, 57(2):536-541.
    [14] . Ju Z, Ren T, Hu C. Soil Thermal Conductivity as Influenced by Aggregation at Intermediate Water Contents[J]. Soil Science Society America Journal 2011, 75(1):26-29.
    [15] . 邸佳颖, 刘晓娜, 任图生. 原状土与装填土热特性的比较[J]. 农业工程学报 2017, 28(21):74-79.
    [16] . Liu Z, Xu J, Li X, Wang J. Mechanisms of biochar effects on thermal properties of red soil in south China[J]. Geoderma 2018, 323:41-51.
    [17] . Fang H, Liu K, Li D, Peng X, Zhang W, Zhou H. Long-term effects of inorganic fertilizers and organic manures on the structure of a paddy soil[J]. Soil and Tillage Research 2021, 213:105137.
    [18] . Johansen O. Thermal Conductivity of Soils[D]. Trondheim, Norwegian University of Science and Technology, 1977.
    [19] . Lu S, Ren T, Gong Y, Horton R. An Improved Model for Predicting Soil Thermal Conductivity from Water Content at Room Temperature[J]. Soil Science Society of America Journal 2007, 71(1):8-14.
    [20] . 苏李君, 王全九, 王铄, 王卫华. 基于土壤物理基本参数的土壤导热率模型. 农业工程学报 2016, 32(2):127-133.
    [21] . Schj?nning P: Thermal conductivity of undisturbed soil – Measurements and predictions. Geoderma 2021, 402.
    [22] . Zhang T, Cai G, Liu S, Puppala AJ. Investigation on thermal characteristics and prediction models of soils[J]. International Journal of Heat and Mass Transfer 2017, 106:1074-1086.
    [23] . Radhakrishna HS, Chu Fy, Boggs SA. Thermal Stability and its Prediction in Cable Backfill Soils.[J] IEEE Transactions on Power Apparatus and Systems 1980, 99(3):856-867.
    [24] . Zhang M, Bi J, Chen W, Zhang X, Lu J. Evaluation of calculation models for the thermal conductivity of soils[J]. International Communications in Heat and Mass Transfer 2018, 94:14-23.
    [25] . Zhang M, Lu J, Lai Y, Zhang X. Variation of the thermal conductivity of a silty clay during a freezing-thawing process[J]. International Journal of Heat and Mass Transfer 2018, 124:1059-1067.
    [26] . Adhikari P, Udawatta RP, Anderson SH. Soil thermal properties under prairies, conservation buffers, and corn–soybean land use systems[J]. Soil Science Society of America Journal 2014, 78(6):1977-1986.
    [27] . Kleber M, Sollins P, Sutton R. A conceptual model of organo-mineral interactions in soils: self-assembly of organic molecular fragments into zonal structures on mineral surfaces[J]. Biogeochemistry 2007, 85(1):9-24.
    [28] . Regelink IC, Stoof CR, Rousseva S, Weng L, Lair GJ, Kram P, Nikolaidis NP, Kercheva M, Banwart S, Comans R. Linkages between aggregate formation, porosity and soil chemical properties.[J]. Geoderma 2015, 247-248:24-37.
    [29] . Carminati A, Kaestner A, Lehmann P, Flühler H. Unsaturated water flow across soil aggregate contacts[J]. Advances in Water Resources 2008, 31(9):1221-1232.
    [30] . Gao Y, Li T, Fu Q, Li H, Liu D, Ji Y, Li Q, Cai Y. Biochar application for the improvement of water-soil environments and carbon emissions under freeze-thaw conditions: An in-situ field trial[J]. Science of The Total Environment 2020, 723(25):138007.
    [31] . Wang MY, Xu SX, Yang JZ, Xu LY, Yu QB, Xie XQ, Shi XZ, Zhao YC. The effect of organic and conventional management practices on soil macropore structure in greenhouse vegetable production[J]. European Journal of Soil Science 2021, 72(5):2133-2149.
    [32] . Ding T, Gao H, Li X. Increasing occurrence of extreme cold surges in North China during the recent global warming slowdown and the possible linkage to the extreme pressure rises over Siberia[J]. Atmospheric Research 2021, 248:105198.
    [33] . 刘志鹏, 徐杰男, 佘冬立, 李学林, 王景梵. 添加生物质炭对土壤热性质影响机理研究[J]. 土壤学报 2018, 55(4):933-944.
    [34] . Zhang X, Fang Q, Zhang T, Ma W, Velthof GL, Hou Y, Oenema O, Zhang F. Benefits and trade-offs of replacing synthetic fertilizers by animal manures in crop production in China: A meta-analysis[J]. Global Change Biology 2020, 26(2):888-900.
    [35] . Miller JJ, Beasley BW, Drury CF, Larney FJ, Hao X, Chanasyk DS, Lupwayi N. Influence of long-term feedlot manure amendments on soil hydraulic conductivity, water-stable aggregates, and soil thermal properties during the growing season[J]. Canadian journal of Soil Science 2018, 98(3):421-435.
    相似文献
    引证文献
    引证文献 [0] 您输入的地址无效!
    没有找到您想要的资源,您输入的路径无效!

    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:6
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2024-08-06
  • 最后修改日期:2024-09-12
  • 录用日期:2024-09-18
文章二维码