低 pH诱导根系铁过量积累抑制拟南芥主根生长的机制研究
DOI:
CSTR:
作者:
作者单位:

1.中国科学院南京土壤研究所, 土壤与农业可持续发展全国重点实验室(中国科学院);2.中国科学院大学;3.山东省农业科学院农业资源与环境研究所/养分资源高效利用全国重点实验室

作者简介:

通讯作者:

中图分类号:

S158.3;S158.4

基金项目:


Study on the Mechanism of Low pH-Induced Excessive Iron Accumulation in Roots Inhibiting the Growth of Arabidopsis Main Root.
Author:
Affiliation:

1.State Key Laboratory of Soil and Sustainable Agricultural Development,Institute of Soil Science,Chinese Academy of Sciences;2.University of Chinese Academy of Sciences;3.Institute of Agricultural Resources and Environment,Shandong Academy of Agricultural Sciences / State Key Laboratory of Efficient Utilization of Nutrient Resources

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    酸性土壤在全球范围内分布广泛,低pH会提高金属离子如Al3+、Fe2+/Fe3+等的溶解度和生物有效性,增加毒害风险,是限制作物产量的主要因素之一。本研究利用拟南芥培养试验,研究低pH胁迫对植物根系生长的影响。结果表明:铁的过量积累是低pH抑制根系生长的重要原因,低pH下植物根部铁含量提高了约2.6倍,诱导根组织中过氧化氢等ROS大量生成,对根系生长的抑制率达到50%-60%。通过减少铁供应可以降低铁的过量累积,从而有效减轻H+对主根生长的抑制作用。转录组分析表明植物在这一胁迫下根部激活抗氧化酶系统以响应ROS爆发,同时部分生长相关基因表达降低,关键转录因子ANAC044的表达可能导致根干细胞死亡。这一发现为深入了解酸性土壤对植物的危害机制提供了新视角,并为改良作物耐酸性和合理管理土壤养分提供了理论依据。

    Abstract:

    Acidic soil is widely distributed globally. A low soil pH reduces nutrient availability and intensifies the toxicity of metal ions such as aluminum and iron, which is one of the main factors limiting crop yields. This study utilized Arabidopsis thaliana cultivation experiments to investigate the impact of low pH stress on plant root growth and explore the role and molecular mechanism of iron under low pH stress. The results indicated that iron plays a crucial role in the inhibition of root growth under low pH conditions. Under low pH, plants experience excessive iron accumulation in their roots, inducing the generation of large amounts of reactive oxygen species (ROS) such as hydrogen peroxide, causing significant damage to root growth. When iron supply was reduced, this damage was significantly alleviated. Transcriptome analysis revealed that plants activate a broad defense response network in their roots under this stress, including the antioxidant enzyme system to respond to ROS bursts. Metabolic shifts from primary to secondary metabolism occur within the plant, and the expression of the key transcription factor ANAC044 leads to root stem cell death and inhibited root growth. This discovery provides a new perspective for understanding the mechanism of acidic soil harm to plants and offers a theoretical basis for improving crop acid tolerance and rational soil nutrient management.

    参考文献
    相似文献
    引证文献
引用本文
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-11-19
  • 最后修改日期:2026-01-04
  • 录用日期:2026-01-06
  • 在线发布日期:
  • 出版日期:
文章二维码