天然腐殖质配施铁铝氧化物对苏打盐碱土团聚体稳定性及有机碳矿化的影响
DOI:
CSTR:
作者:
作者单位:

1.山西农业大学资源环境学院;2.中国科学院南京土壤研究所;3.农业农村部耕地质量和农田工程监督保护中心

作者简介:

通讯作者:

中图分类号:

S141.4

基金项目:


Effects of Combined Application of Natural Humus and Iron–Aluminum Oxides on Aggregate Stability and Organic Carbon Mineralization in Soda Saline–Alkali Soil
Author:
Affiliation:

1.College of Resources &2.Environment, Shanxi Agricultural University;3.Institute of Soil Science, Chinese Academy of Sciences, Nanjing;4.Cultivated Land Quality &5.Farmland Engineering Supervision and Protection Center, Ministry of Agriculture and Rural Affairs

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    本研究针对苏打盐碱土结构稳定性差及碳库扩容难的问题,进行了为期180 d的室内培养试验,共设置对照(CK)、单施天然腐殖质材料(HM)及天然腐殖质材料分别与氧化铁(HMFe)、氧化铝(HMAl)配施4个处理。然后通过测定土壤水稳性团聚体组成、CO2排放量及土壤理化性质,并结合一级动力学模型,探究了不同外源物料对土壤物理结构与生物化学过程的驱动特征。结果表明:(1)与CK相比,HM处理对大团聚体形成及稳定性的提升效果最好,其大团聚体含量较CK显著增加了21.83%。而天然腐殖质配施铁/铝氧化物虽然显著提升了SOC含量,但因矿物表面的竞争吸附干扰了有机质的物理胶结,导致其平均重量直径低于HM处理。 (2)所有添加外源物料的处理均诱发了有机碳矿化的正激发效应。其中,HMAl处理因显著降低pH缓解了碱胁迫,从而导致其矿化速率常数最高,达到0.0091 d-1,但得益于较强的化学保护作用,其潜在可矿化碳库及累积排放量最低。(3)团聚体稳定性与CO2累积排放量呈显著正相关,表明微生物驱动的结构形成伴随着碳消耗过程。总的来说,天然腐殖质主要通过激发微生物活性促进土壤团聚体的物理胶结;而铁/铝氧化物的加入虽然在一定程度上干扰了大团聚体的构建并加速了活性碳周转,但其通过化学固持作用增加了土壤有机碳的留存。因此,在苏打盐碱土改良过程中,需综合权衡物理结构稳定性与化学固碳能力之间的关系。

    Abstract:

    This study aimed to address the poor structural stability and limited carbon pool expansion of soda saline–alkali soil by conducting a 180-day laboratory incubation experiment. Four treatments were established, including a control (CK), natural humus material alone (HM), and natural humus material combined with iron oxide (HMFe) or aluminum oxide (HMAl). Soil water-stable aggregate distribution, CO2 emissions, and physicochemical properties were determined, and a first-order kinetic model was applied to elucidate the driving mechanisms of soil physical structure and biogeochemical processes under different amendments. The results showed that: (1) Compared with CK, the HM treatment exhibited the strongest enhancement of macroaggregate formation and stability, with macroaggregate content increasing by 21.83%. Although the combined application of natural humus with iron/aluminum oxides significantly increased soil organic carbon (SOC) content, competitive adsorption on mineral surfaces interfered with the physical cementation of organic matter, resulting in a lower mean weight diameter than that under the HM treatment. (2) All amended treatments induced a positive priming effect on organic carbon mineralization. Among them, the HMAl treatment exhibited the highest mineralization rate constant (0.0091 d-1), primarily due to alleviation of alkaline stress through a significant reduction in soil pH; however, owing to strong chemical protection, it showed the lowest potentially mineralizable carbon pool and cumulative CO2 emissions. (3) Aggregate stability was significantly and positively correlated with cumulative CO2 emissions, indicating that microbially driven aggregate formation was accompanied by carbon consumption. Overall, natural humus primarily promoted physical aggregation by stimulating microbial activity, whereas the addition of iron/aluminum oxides partially hindered macroaggregate formation and accelerated labile carbon turnover but enhanced SOC retention through chemical stabilization. Therefore, soil amelioration strategies for soda saline–alkali soils should comprehensively balance physical structural stability and chemical carbon sequestration capacity.

    参考文献
    相似文献
    引证文献
引用本文
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-12-30
  • 最后修改日期:2026-01-14
  • 录用日期:2026-01-16
  • 在线发布日期:
  • 出版日期:
文章二维码