设为首页  |   加入收藏
引用本文:
【打印本页】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 208次   下载 104 本文二维码信息
码上扫一扫!
分享到: 微信 更多
高低应答CO2水稻品种苗期根系对高C环境的响应
吴晶晶, 施卫明
中国科学院南京土壤研究所
摘要:
本文利用水培试验和琼脂板培养试验研究了高CO2条件下产量响应存在显著差异的两个水稻品种:II优084(高响应)和武运粳23(低响应),在幼苗期根系形态对高C的响应差异。水培试验结果表明,在幼苗时期,高应答品种II优084在低氮条件下地上部生物量在高CO2下增加28.5%,根系干物质量对高CO2响应显著,增幅为28.5%,而其不定根数目没有显著增加,对干物质量响应贡献较大的为总根长。II优084的总根长在高CO2下增幅为26.3%,不同根粗的根长均有高响应。低应答品种武运粳23低氮下地上部和根系响应不显著,而在正常氮和高氮下则不同。正常氮条件下,地上部对高CO2响应不显著,而根系生物量在高CO2下显著增加76.0%,不定根数目增加25.8%,同时总根长增加45.0%,不同根粗的根长均有高响应,II优084则没有显著响应。在高氮条件下,武运粳23地上部生物量在高CO2下增加35.5%,根系生物量增加80.3%,不定根数目增加38.5%,根系平均直径增加16.7%,总根长无响应,而II优084生物量在高氮下无显著差异。同时,武运粳23在正常氮和高氮下的根系表面积和体积对高CO2响应也较II优084显著。琼脂板培养试验的结果与水培结果一致,武运粳23根系形态对高浓度蔗糖的响应普遍高于II优084。试验结果说明品种对高C环境的响应特征不随培养条件的变化而变化。与植株生长后期不同,在幼苗期正常氮条件下低应答品种武运粳23的根系生物量和各形态指标对高C的响应明显高于II优084,说明水稻苗期生长响应参数与后期产量响应参数不一定一致,可能是由于苗期生长高响应的品种在营养生长期旺长,反而不利于后期生殖生长,从而导致后期产量的低响应。
关键词:  高C环境  培养条件  品种差异  根系形态
DOI:10.13758/j.cnki.tr.2019.06.002
分类号:S511
基金项目:国家自然科学基金项目(31430095)资助。
Response of Root Morphology in Seedling Stage of Different Rice Cultavars to High C Condition
Wu Jingjing, Shi Weiming
Institute of Soil Science, Chinese Academy of Science
Abstract:
Two rice cultivars, Wuyunjing23 (WYJ) and IIyou084 (IIY), have a different response to elevated [CO2] in their seed yield. It is not clear how their seedling root respond to high [CO2]. In this study, hydroponic culture and agar plate culture were utilized to explore the difference in WYJ and IIY response to elevated C condition in seedling root morphology. The results of hydroponics experiment showed that the elevated [CO2] increased shoot biomass of IIY by 28.5% under low nitrogen condition, and the dry weight of root was significantly responsive to high [CO2] at seedling stage. The number of adventitious roots was not increased significantly, and the total root length played a more important role in root biomass response. The total root length of IIY increased by 26.3% under high [CO2], and the root length in both levels of root diameter had high response. The response of shoot and root biomass of WYJ was not significant under low nitrogen level, while it is not the case under normal and high nitrogen levels. Under normal nitrogen condition, the response of WYJ shoots to high [CO2] was not significant, while its root biomass was increased significantly by high [CO2]. The number of adventitious roots was increased by 25.8%, while the total root length was increased by 45.0%. The root length in both levels of root diameter had high response. IIY did not respond significantly under normal nitrogen. At the high nitrogen level, the shoots biomass of WYJ was increased by 35.5% under high [CO2], the root biomass was increased by 80.3%, the number of adventitious roots was increased by 38.5%, and the root mean diameter was increased by 16.7%. The total root length had no response to elevated [CO2], and the biomass of IIY had no significant difference under high nitrogen condition. At the same time, WYJ showed higher response in the root surface area and volume to high [CO2] than IIY under normal nitrogen and high nitrogen conditions. The results of agar plate culture test were consistent with the results of water culture test, and response of WYJ root morphology to high concentration of sucrose was higher than that of IIY. The results showed that the different response to high C condition between cultivars would not change with different culture conditions. Different from the response in middle and late growth stage, response of seedlings root biomass and morphology to high [CO2] was more significant in WYJ than in IIY at normal nitrogen level, which shows that the response of rice yield are not always consistent with the response of seedling growth. The high response of seedling growth may not reflect the high response of later yield.
Key words:  High C condition  Culture  Cultivars  Root morphology

您是第2741252位访问者
版权所有 © 《土壤》编辑部
本系统由北京勤云科技发展有限公司设计   京ICP备09084417号