设为首页  |   加入收藏
引用本文:
【打印本页】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 137次   下载 71 本文二维码信息
码上扫一扫!
分享到: 微信 更多
铜和磺胺嘧啶复合污染对土壤酶活性及微生物群落功能多样性的影响
李明珠1, 廖 强1, 董远鹏1, 刘喜娟1, 邵翼飞1, 胡欣欣2, 李梦红2, 刘爱菊2
1.山东理工大学农业工程与食品科学学院;2.山东理工大学资源与环境工程学院
摘要:
随着畜禽养殖业规模化发展以及畜禽粪便的大量农用,由此导致的土壤重金属和抗生素复合污染问题日益突出。以畜禽养殖常用的饲料添加剂铜(Cu)和磺胺嘧啶(sulfadiazine, SDZ)为目标污染物,分别采用土壤酶试剂盒(微量法)和Biolog-ECO板法,研究二者复合污染对土壤酶活性和微生物群落功能多样性的影响。结果发现:低剂量Cu(200 mg/kg)复合污染可缓解SDZ对土壤脱氢酶和β-葡萄糖苷酶活性的抑制效应,低剂量Cu与SDZ表现为拮抗作用;但加重SDZ对磷酸酶活性的抑制效应,二者表现为协同抑制作用。高剂量Cu(500 mg/kg)和SDZ复合对所测试土壤酶活性均表现为协同抑制作用。Biolog-ECO分析表明,SDZ 10 mg/kg添加量对土壤微生物活性具有促进作用,而Cu和SDZ复合污染则可显著抑制土壤微生物代谢活性。多样性指数分析表明,Cu和SDZ复合污染对微生物群落多性影响较小,但可显著改变微生物种群的均一性;且主成分分析也表明,二者复合污染可显著改变土壤微生物群落结构组成。可见,Cu和SDZ复合污染对土壤酶活性的影响与土壤酶的种类及复合剂量有关,且土壤脱氢酶活性是反映SDZ及其与Cu复合污染较为敏感的指标;Cu和SDZ复合污染可显著抑制土壤微生物群落的整体代谢活性,并改变代谢功能,进而促使土壤微生物结构发生变化。
关键词:  重金属  抗生素  土壤  酶活性  微生物多样性
DOI:10.13758/j.cnki.tr.2020.05.016
分类号:S154.3
基金项目:国家自然科学基金项目(41671322, 41771348)、山东省自然科学基金项目(ZR2015DM010)和校城融合支持计划项目(2016ZBXC102)资助。
Effects of Copper and Sulfadiazine Combined Pollution on Soil Enzyme Activity and Metabolic Function Diversity of Microbial Community
LI Mingzhu1, LIAO Qiang1, DONG Yuanpeng1, LIU Xijuan1, SHAO Yifei1, HU xinxin2, LI Menghong2, LIU Aiju2
1.School of Agricultural Engineering and Food Science, Shandong University of Technology;2.School of Resources and Environment Engineering, Shandong University of Technology
Abstract:
With the large-scale development of livestock and poultry breeding industry, large amount of livestock and poultry manure has been used to agriculture, resulting in the deterioration of combined pollution of heavy metals and antibiotics in soil. In this paper, the feed additives copper (Cu) and sulfadiazine (SDZ), which are commonly used in livestock and poultry breeding, were used as the target pollutants. The soil enzyme kit (micro method) and Biolog ECO-plate method were adopted to study the effect of the combined pollution on enzyme activity and the functional diversity of soil microbial community. The results showed that low concentration of Cu (200 mg/kg) combined pollution could alleviate the inhibitory effect of SDZ on soil dehydrogenase and β-glucosidase, i.e., antagonistic effect. However, SDZ had a synergistic inhibitory effect on phosphatase. The high concentration of Cu (500 mg/kg) and SDZ complex showed synergistic inhibition on soil enzymes tested. Biolog ECO-plate analysis showed that the addition of 10 mg/kg SDZ promoted soil microbial activity, while the combination of Cu and SDZ significantly inhibited soil microbial metabolic activity. The diversity index analysis showed that the combined pollution of Cu and SDZ had little effect on microbial community traits, but significantly changed the homogeneity of microbial populations. Principal component analysis also showed that the combined pollution could significantly change soil microbial community structure. In conclusion, the effect of Cu and SDZ combined pollution on soil enzyme activity is related to soil enzyme species and pollutant concentration, and soil dehydrogenase is a sensitive indicator reflecting SDZ and its combined pollution with Cu; The combined pollution of Cu and SDZ can significantly inhibit the overall metabolic activity of soil microbial communities and change the metabolic function, thus can promote the changes of soil microbial structure.
Key words:  Heavy metal  Antibiotic  Soil  Enzyme activity  Microbial diversity

您是第3525258位访问者
版权所有 © 《土壤》编辑部
本系统由北京勤云科技发展有限公司设计   京ICP备09084417号