基于辅助变量的紫色土耕地土壤有机质空间预测
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

S127

基金项目:

国家自然科学基金项目(41971273)资助。


Soil Organic Matter Prediction of Purple Soil Based on Auxiliary Variables
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    研究收集了川中丘陵区域紫色土耕地共135个土壤样本,基于GEE(Google Earth Engine)云平台调用高分辨率Sentinel-2A数据、SRTMGL1v3.0高程数据、SoilGrids土壤属性数据,并创新性地加入了纹理特征作为辅助变量,分别通过梯度提升决策树(GBDT)和随机森林(RF)构建两种预测模型反演研究区土壤有机质。结果表明:研究区内紫色土耕地土壤有机质含量偏低,养分级别为二 ~ 六级;GBDT算法构建的模型相比于RF算法预测精度更高,R2rRMSE分别为0.687、0.829、5.668 g/kg和0.514、0.717、6.765 g/kg;加入纹理特征的模型R2分别增加了6.80% 和1.70%,为土壤有机质预测研究提供了新的思路。

    Abstract:

    This study collected a total of 135 samples from purple soil farmlands in the hilly region of central Sichuan. Based on the GEE cloud platform, high-resolution Sentinel-2A data, SRTMGL1v3.0 elevation data, and SoilGrids soil attribute data were invoked, and texture feature data was innovatively added. Two prediction models were constructed by using gradient enhancement decision tree (GBDT) and random forest (RF) to invert SOM. The results showed that SOM content of purple soil farmlands in the study area was relatively low, with the level ranging from 2 to 6 levels. The models constructed by GBDT algorithm had higher prediction accuracy (R2=0.687, r=0.829, RMSE=5.668 g/kg) compared to RF algorithm (R2=0.514, r=0.717, RMSE=6.765 g/kg). The R2 with texture features increased by 6.80% and 1.70%, respectively. TGIS study can provide a new scientific approach for SOM prediction.

    参考文献
    相似文献
    引证文献
引用本文

刘雅璇,于慧,罗勇.基于辅助变量的紫色土耕地土壤有机质空间预测[J].土壤,2024,56(4):857-865. LIU Yaxuan, YU Hui, LUO Yong. Soil Organic Matter Prediction of Purple Soil Based on Auxiliary Variables[J]. Soils,2024,56(4):857-865

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-10-22
  • 最后修改日期:2024-02-15
  • 录用日期:2024-02-18
  • 在线发布日期: 2024-08-27
  • 出版日期:
文章二维码