设为首页  |   加入收藏
引用本文:
【打印本页】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
过刊浏览    高级检索
本文已被:浏览 59次   下载 0  
分享到: 微信 更多
生物质炭引起的土壤碳激发效应与土壤理化特性的相关性
刘本娟1, 谢祖彬1, 刘琦2, 王晓洁1, 林志斌1, 卑其成1, 蔺兴武1, 刘钢1, 朱建国1
1.中国科学院南京土壤研究所;2.南京林业大学
摘要:
生物炭因含有丰富的惰性碳元素而被看作是一种极富应用前景的固碳材料,将其施入土壤后可以增加土壤稳定性碳库,减缓全球气候变化。前人研究表明,生物炭添加到土壤中后,将增加(正激发效应)或者减缓(负激发效应)土壤原有机碳的矿化速率。然而,生物炭对不同土壤的激发效应以及土壤性质与生物炭激发效应之间的关系还不明确。因此,本研究利用13C 稳定性同位素标记的小麦秸秆制作成生物炭,分别将等碳量的生物炭和标记秸秆添加到四种不同性质的土壤中,室内培养一年,测定生物炭及秸秆中的碳元素在不同土壤中的降解量及其对土壤原有机碳的激发效应量。研究结果表明:生物炭在黑土水稻土以及下位砂姜土水稻土中引发了显著的负激发效应,激发效应量分别为-284 mg/kg和-157 mg/kg,而在红壤水稻土以及低肥力红壤水稻土(长期定位不施肥的红壤水稻土)中引发正激发效应,激发效应量分别为33.3 mg/kg和58.0 mg/kg;秸秆在四种土壤中引发的激发效应量不同,均为正激发效应,正激发效应量远大于生物炭。生物炭激发效应量与土壤的Ec(r= -0.884)以及pH(r= -0.824)成极显著的负相关关系。生物炭-碳在不同土壤上的累积降解量存在显著差异,黑土水稻土中为15.6 mg/kg,红壤水稻土中为14.2 mg/kg,下位砂姜土以及低肥力红壤水稻土中相似,分别为10.4 mg/kg和9.92 mg/kg;秸秆-碳的累积降解量远大于生物炭-碳,其在低肥力红壤水稻土中的降解量显著低于其他三种土壤。生物炭添加在黑土水稻土中碳净损失量最低,下位砂姜土水稻土中次之,低肥力红壤水稻土中最高。研究表明,生物炭在土壤中的固碳效果不仅受到生物炭-碳自身降解速率的影响,还会受到生物炭引发的土壤碳激发效应量的影响。
关键词:  生物炭  激发效应  土壤性质  稳定性同位素标记  固碳效果
DOI:
分类号:S154.2
基金项目:国家自然科学基金项目(41171191,31870500),国家科技基础性专项(2015FY110700),公益性行业(农业)科研专项(201503137)
Correlation between biochar-induced carbon priming effect in soil and soil physical and chemical properties
Liu ben juan1, Xie zu bin1, Liu qi2, Wang xiao jie1, Lin zhi bin1, Bei qi cheng1, Lin xing wu1, Liu gang1, Zhu jian guo1
1.Institute of Soil Science, Chinese Academy of Sciences;2.Nanjing Forestry University
Abstract:
Biochar was regarded as a promising tool for carbon sequestration due to its richness of stable carbon. It can enhance soil stable carbon pool and abate the global climate change. Former studies showed that biochar could accelerate or suppress soil native organic carbon turnover rate, which were called positive and negative priming effect respectively. However, biochar–induced priming effects in different soils, as well as the relationship between priming effect and soil properties, were still unclear. In this study, 13C-labelled biochar pyrolyzed from 13C-labelled wheat straw was incorporated into 4 soils with contrasting properties for one-year incubation in lab, additionally, equivalent carbon amount 13C labelled wheat straw was also conducted. Results showed that biochar induced significant negative priming effects in Mollisol paddy soil and Inceptisol paddy soil, and the priming amount were -284 mg/kg and -157 mg/kg, respectively, but in Ultisol paddy soil and low fertility Untisol paddy soil (long-term experiment plot without fertility amendment), biochar induced positive priming effects with 33.3 mg/kg and 58.0 mg/kg priming amount respectively; Wheat straw induced different positive priming effects in soils, and the positive priming amounts were higher than those of the biochar-induced. Biochar-induced priming effect was significantly negatively correlated with soil Ec (r=-0.884) and soil pH (r=-0.824). After one-year incubation, and the cumulative biochar-carbon decomposition were 15.6 mg/kg in Mollisol paddy soil, 14.2 mg/kg in Untisol paddy soil, 10.4 mg/kg in Inceptisol paddy soil and 9.92 mg/kg in low fertility Untisol paddy soil; Straw-carbon cumulative decomposition was much higher than biochar-carbon, and it was the lowest in low fertility paddy soil than in other three soils. The calculated carbon net loss was the lowest in Mollisol paddy soil following by Inceptisol paddy soil, and low fertility Ultisol paddy soil was the highest. The study indicated that carbon sequestration effect of biochar was influenced not only by decomposition of biochar-carbon itself, but also by biochar-induced priming effect.
Key words:  biochar  priming effect  soil property  stable isotope labelling  carbon sequestration effect

您是第2907597位访问者
版权所有 © 《土壤》编辑部
本系统由北京勤云科技发展有限公司设计   京ICP备09084417号