设为首页  |   加入收藏
引用本文:
【打印本页】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
过刊浏览    高级检索
本文已被:浏览 100次   下载 0  
分享到: 微信 更多
土壤孔隙结构对水稻土温室气体排放的影响
孙钰翔1, 张广斌2, 房焕3, 张中彬2, 廖超林1, 周虎2
1.湖南农业大学;2.中国科学院南京土壤研究所;3.河海大学
摘要:
土壤结构影响水分和气体的运动和土壤生物活动,进而影响稻田温室气体排放。为探明土壤结构对水稻生长过程中温室气体排放的影响,选取江苏宜兴的湖白土和江西进贤的红壤性水稻土进行盆栽试验。设置不搅动(No Puddling,NP)、搅动(Puddling,PD)和搅动后掰土回填(Repacked after Puddling,RP)三个处理。应用X射线CT成像技术分析不同处理土壤孔隙结构,通过静态箱法测定水稻生长过程中的温室气体排放。结果显示,PD处理降低了土壤大孔隙度和孔隙连通性,而NP及RP处理的大孔隙较多且连通度高。湖白土PD处理的CH4排放量分别是NP处理的2.5倍和RP处理的14.6倍,相关分析表明湖白土CH4的排放与大孔隙度呈显著负相关,表明大孔隙度升高会降低CH4排放。红壤性水稻土NP处理的CH4排放最高,可能是由于NP处理≤30μm的孔隙度最低,促进了CH4的排放;PD处理提高了N2O排放,相关分析表明N2O排放总量和直径30~1000μm孔隙呈显著负相关。两种土壤RP处理全球增温潜势(GWP)强度以及CH4总排放量均显著低于NP和PD处理。研究结果表明土壤孔隙结构的改变影响稻田温室气体的排放,通过改变耕作方式调节土壤结构可能是稻田CH4和N2O的减排的途径之一。
关键词:  孔隙结构  显微CT  甲烷  氧化亚氮  全球增温潜势
DOI:
分类号:s152
基金项目:国家自然科学基金项目(面上项目,重点项目,重大项目)
Effects of Soil Pore Structure on Greenhouse Gas Emission of Paddy Soils
SUN YU XIANG1, ZHANG GUANG BIN2, FANG HUAN3, ZHANG ZHONG BIN2, LIAO CHAO LIN1, ZHOU HU2
1.Hunan Agricultural University;2.China Agricultural University;3.Hohai University
Abstract:
【Objective】Soil structure affects soil water and gas transport and soil biological activities, thus influence greenhouse gas emissions of paddy soils.【Method】Incubation experiment was conducted to study the effect of soil structure on GHG emissions. Three treatments, i.e. non-puddling (NP), puddling, (PD) and repacked after puddling (RP) were studied on two paddy soils (whitish paddy soil and red paddy soil). The X-ray computed tomography and image analysis were used to determine soil pore structure. Greenhouse gas emissions during rice growth period were measured by the static box method.【Result】Puddling significantly decreased soil macroporosity and pore connectivity, while the NP and RP treatments had more large pores with higher connectivity for both soils. The PD treatment of whitish paddy soil promoted CH4 emission, accounting for 2.5 times and 14.6 times of the NP and RP treatment, respectively. Correlation analysis showed CH4 emission negatively correlated with macroporosity, indicating the increase of large porosity will reduce CH4 emissions. The NP treatment of red paddy soil has the highest CH4 emission, which might be due to the lowest porosity of ≤30μm pores that promotes CH4 emission. NP treatment of red paddy soil significantly increased N2O emissions, which was negatively correlated with the 30~1000μm pores. The Global Warming Potential (GWP) of the RP treatment for both soils was significantly lower than the other treatments. 【Conclusion】This study confirms that change in soil pore structure greatly affected greenhouse gas emissions. Maintaining a porous soil structure can reduce CH4 emission and global warming potential.
Key words:  pore structure  micro CT  CH4  N2O  GWP

您是第3354228位访问者
版权所有 © 《土壤》编辑部
本系统由北京勤云科技发展有限公司设计   京ICP备09084417号