腐植酸强化微生物去除土壤重金属和多环芳烃研究进展
DOI:
作者:
作者单位:

1.成都理工大学生态环境学院;2.东北农业大学资源与环境学院;3.成都理工大学地球科学学院

作者简介:

通讯作者:

中图分类号:

X53

基金项目:

国家重点研发计划(2020YFC1808300),地质灾害防治与地质环境保护国家重点实验室自主课题(SKLGP2021Z020)和四川省自然科学基金面上项目(2023NSFSC0135)Project supported:The National Key Research and Development Program (2020YFC1808300), the Research Fund of State Key Laboratory of Geohazard Prevention andGeoenvironment Protection(SKLGP2021Z020) and Sichuan Provincial Natural Science Foundation General Project (2023NSFSC0135)


Research progress on humic acid-enhanced microbial remediation of soil contaminated with heavy metals and polycyclic aromatic hydrocarbons
Author:
Affiliation:

1.College of Ecology and Environment, Chengdu University of Technology;2.School of Resources and Environment, Northeast Agricultural University;3.College of Earth Sciences, Chengdu University of Technology

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    全球范围内,土壤重金属、多环芳烃及其复合污染问题尤为突出。微生物修复技术具有低成本、环境友好、无二次污染等优点,是具有良好发展前景的土壤修复技术之一,但常受营养状况、污染物性质等的影响,修复效率有限。腐植酸具有丰富的活性官能团和独特的化学结构,在强化微生物修复重金属和多环芳烃污染土壤方面具有巨大应用潜力,但对环境也可能产生负面影响。本文旨在总结与分析腐植酸强化微生物修复重金属和多环芳烃污染土壤的相关研究,梳理腐植酸的强化作用机制,并对腐植酸强化微生物修复技术的优势和局限性进行全面评估。腐植酸可通过吸附、络合等反应降低土壤中重金属和多环芳烃的生物有效性,作为表面活性剂增强多环芳烃的溶解度,或作为电子介质加速微生物的呼吸,为微生物提供能源等多种方式有效增强重金属的生物还原和多环芳烃的生物降解,但也可能与污染物形成难降解化合物,或引发土壤酸化,或降低电子传递速率,进而抑制微生物修复。未来研究需要关注腐植酸强化微生物修复重金属和多环芳烃污染土壤评价体系,从宏基因技术等角度探究腐植酸对微生物代谢表达和功能蛋白质生产的影响,更加深入理解腐植酸对微生物修复污染土壤的影响机理。

    Abstract:

    Globally, the issue of soil contamination from heavy metals, polycyclic aromatic hydrocarbons (PAHs), and their composite contaminants is notably conspicuous. Microbial remediation technology, renowned for its low cost, environmental friendliness, and minimal secondary pollution, stands out as a promising soil remediation approach. However, its effectiveness is often hampered by factors such as nutrient conditions and the characteristics of pollutants. Humic acid, with its abundant active functional groups and unique chemical structure, holds considerable potential for enhancing microbial remediation of heavy metal and PAH-contaminated soils. Nevertheless, the application of humic acid raises concerns about potential adverse environmental effects. This article aims to succinctly review and analyze recent research progress in humic acid-enhanced microbial remediation of heavy metals and PAH-contaminated soils. It seeks to elucidate the mechanisms underpinning humic acid"s enhancement role and to conduct a comprehensive evaluation of the merits and limitations of humic acid-enhanced microbial remediation technology. Humic acid effectively reinforces microbial reduction of heavy metals and the biodegradation of PAHs through processes such as adsorption, chelation, and acting as a surfactant to enhance PAH solubility. However, caution is warranted, as humic acid might form recalcitrant compounds with pollutants, induce soil acidification, or reduce electron transfer rate, thereby impede microbial remediation. Future research should focus on developing robust assessment systems for humic acid-enhanced microbial remediation of heavy metals and PAH-contaminated soils. It should also explore the impact of humic acid on microbial metabolic expression and the production of functional proteins using advanced techniques such as metagenomics. This comprehensive approach will deepen our understanding of how humic acid influences microbial remediation in contaminated soils.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-02-21
  • 最后修改日期:2024-04-12
  • 录用日期:2024-04-17
  • 在线发布日期:
  • 出版日期: