查询字段 检索词
  土壤  2020, Vol. 52 Issue (4): 853-861  DOI: 10.13758/j.cnki.tr.2020.04.028
0

引用本文  

胡柯鑫, 董春华, 罗尊长, 谢宜, 周旋, 周孟瑜, 洪曦, 王玲玲. 不同释放速率过氧化钙对模拟潜育环境下稻田土壤理化特性的影响. 土壤, 2020, 52(4): 853-861.
HU Kexin, DONG Chunhua, LUO Zunchang, XIE Yi, ZHOU Xuan, ZHOU Mengyu, HONG Xi, WANG Lingling. Effects of Different Release Rates of Calcium Peroxide on Physicochemical Properties of Paddy Soil Under Simulated Gley Environment. Soils, 2020, 52(4): 853-861.

基金项目

国家“十三五”重点研发计划项目(2016YFD0200809)、国家“十二五”科技支撑计划课题项目(2015BAD23B03) 、湖南省科技创新资金项目(2019LS03-1)和长财教指[2019]157 号(kq1907052)资助。

通讯作者

董春华, (dch1001@126.com)

作者简介

胡柯鑫(1994—),男,安徽安庆人,硕士研究生,主要从事植物营养与施肥研究。E-mail: m18229864624@163.com
不同释放速率过氧化钙对模拟潜育环境下稻田土壤理化特性的影响
胡柯鑫1,2 , 董春华2 , 罗尊长1,2 , 谢宜1,2 , 周旋2 , 周孟瑜3 , 洪曦2 , 王玲玲1,2     
1. 湖南大学研究生院隆平分院,长沙 410125;
2. 湖南省土壤肥料研究所,长沙 410125;
3. 湖南省浏阳市达浒镇农业综合服务站,湖南浏阳 410305
摘要:为探索缓释过氧化钙对潜育性稻田土壤的改良效果。于网室内进行潜育化稻田环境模拟试验,以不施、施过氧化钙粉末、施过氧化钙颗粒为对照,从已研发的10种不同包膜缓释过氧化钙中,选出4种,探究其在水稻早稻分蘖期与收获期对潜育化稻田土壤中还原物质总量、活性还原性物质、还原性铁锰、有效养分等含量变化的影响,以及对水稻整个生育期土壤pH、氧化还原电位、活性氧浓度动态变化的影响。结果表明,施用过氧化钙均能降低土壤还原物质含量,提高土壤速效养分含量和土壤pH、氧化还原电位及活性氧浓度。缓释过氧化钙的改良效果最佳,其次为过氧化钙颗粒和过氧化钙粉末。缓释过氧化钙处理中以乙基纤维素包膜效果最好,与不施过氧化钙处理相比,施用乙基纤维包膜过氧化钙和过氧化钙粉末处理下还原物质总量、活性还原性物质含量和还原性铁锰含量分蘖期分别降低了22.9%、36.0%,20.6%、13.6%,37.6%、29.0%和38.7%、56.9%,收获期分别降低了32.4%、20.0%,32.7%、19.5%,34.3%、7.9%和25.5%、38.6%;其土壤pH平均分别提高13.5%和8.3%,土壤氧化还原电位与活性氧浓度平均分别依次提高43.0%、2.2%和58.6%、13.4%。结果可为缓释过氧化钙在实际应用中对潜育化稻田的改良提供理论依据和实践基础。
关键词缓释过氧化钙    潜育环境模拟    土壤理化特性    改良效果    

潜育化稻田是我国南方常见的低产田,主要分布在湖南、江西和江苏等地[1]。仅湖南省的潜育化稻田面积就达49万hm2,约占湖南省稻田总面积的18%[2],增产潜力巨大。潜育化稻田由于长期处于渍水状态,导致土壤缺氧、水土温度低以及活性还原性物质过度累积[3-5];同时,有机物的分解还原也导致土壤氧化还原电位降低,Fe、Mn等处于还原低价状态[6],对水稻生长极为不利,严重影响水稻增产[7]

目前,针对潜育化稻田的改良与治理措施主要集中在开沟排水[8-9]、水旱轮作[10]以及优化施肥[11]上。刘杰等[6]研究表明起垄栽培湿润灌溉能够降低土壤活性还原物质含量与亚铁含量。李大明等[8]研究发现工程排水有效降低了潜育化稻田土壤表层还原物质总量,冬季晒阀和垄作处理可以显著降低土壤还原物质总量。这些措施虽能有效改善稻田土壤潜育化程度,但投入成本大,维护成本高,推广障碍因素较多[8, 12]。针对还原性物质、亚铁以及二价锰等土壤潜育化改良的关键障碍因子[13],杨利等[14]和余喜初等[15]研究表明,施用过氧化钙能提高土壤氧化还原电位,减少土壤还原物质含量和活性还原物质含量,促进水稻增产;周金玲等[16]研究CaO2颗粒与粉末对潜育化稻田微生物以及有效养分时发现,CaO2颗粒更能促进微生物生长与土壤有效养分释放。近年来对过氧化钙改良潜育化稻田土壤改良效果的研究颇多[17-18],但由于过氧化钙粉末施入土壤后反应迅速,释氧速率快,达不到在水稻生育期内潜育性稻田有害还原物质削减要求。鉴于此,董春华等[19]通过对过氧化钙造粒后进行包膜处理,研发出10种不同包膜材料的缓释过氧化钙。本文根据已研发的10种包膜过氧化钙的释氧特性,选出其中4种,通过潜育化水稻土模拟试验,比较其和过氧化钙粉末、过氧化钙颗粒对潜育化稻田还原性物质总量、活性还原物质含量、氧化还原状况、pH、活性氧浓度以及土壤碱解氮、有效磷、速效钾含量的影响,以期探究不同缓释过氧化钙在潜育化稻田中施用效果,并为潜育化稻田缓释过氧化钙实际生产应用提供理论依据和实践基础。

1 材料与方法 1.1 供试地点

试验于湖南省土壤与肥料研究所试验场进行(28°11′48.04″N,113°04′33.42″E)。该区属亚热带季风性湿润气候。气候温和、降水充沛、雨热同期、四季分明。年平均气温17.2 ℃,年积温为5 457 ℃,年均降水量1 361.6 mm。

1.2 供试材料

供试土壤:采自湖南省浏阳市镇头镇(28°0′ 21.6″N,113°19′44.4″E)的典型潜育化稻田。发育于板页岩的潜育化水稻土,耕层潜育明显,土壤呈青灰色。在试验取土前采用梅花形五点取样法取0 ~ 20 cm耕层土壤,基本理化性质为pH 5.24,有机质34.6 g/kg,全氮1.82 g/kg,全磷0.25 g/kg,全钾21.6 g/kg,碱解氮137 mg/kg,有效磷0.25 mg/kg,速效钾22 mg/kg,缓效钾37 mg/kg,土壤含水量495.2 g/kg。

供试过氧化钙:采用圆盘造粒机对60%过氧化钙粉料进行造粒,底喷流化床包衣机对过氧化钙颗粒进行包膜。对研制的10种包膜过氧化钙进行水中溶出率试验,根据其活性氧释放规律以及pH变化规律选出合适的4种包膜过氧化钙,与过氧化钙粉末、颗粒进行模拟潜育化稻田改良试验。4种包膜分别为:石蜡包膜的缓释过氧化钙[20],聚乙烯包膜的缓释过氧化钙[21],乙基纤维素包膜的缓释过氧化钙[22],纳米有机膨润土包膜的缓释过氧化钙[23-24]

1.3 试验设计

称取新鲜土样5 kg(干土重2.52 kg)置于PVC桶内进行模拟试验,保证耕作层20 cm以上。试验设7个处理:T1:不施过氧化钙;T2:过氧化钙粉末;T3:未包膜过氧化钙颗粒;T4:石蜡包膜的缓释过氧化钙;T5:聚乙烯包膜的缓释过氧化钙颗粒;T6:乙基纤维素包膜的缓释过氧化钙;T7:纳米有机膨润土包膜的缓释过氧化钙。重复3次,共21盆。试验过程中一直处于淹水状态,淹水高度高于泥层2 ~ 3 cm。

过氧化钙用量:粉末过氧化钙2.91 g(3 081.69 kg/hm2,过氧化钙含量52.6%),未包膜过氧化钙颗粒2.98 g (3 155.82 kg/hm2,过氧化钙含量51.3%),石蜡包膜过氧化钙3.07 g(3 251.13 kg/hm2,过氧化钙含量49.9%),聚乙烯包膜过氧化钙3.01g(3 187.59 kg/hm2,过氧化钙含量50.8%),乙基纤维素包膜过氧化钙3.02 g (3 198.18 kg/hm2,过氧化钙含量50.7%),纳米有机膨润土包膜过氧化钙3.05 g(3 229.95 kg hm2,过氧化钙含量50.1%)。试验历时96 d(整个早稻移栽后生育期)。

1.4 测定项目与方法

测定土壤pH、有机质、全氮、全磷、全钾、碱解氮、有效磷和速效钾含量等:pH采用水:土= 2.5:1 (V/m)电位计法测定;全氮、全磷、全钾以及有机质分别采用半微量开氏法、氢氧化钠熔融-钼锑抗比色法、氢氧化钠熔融-火焰光度计法与重铬酸钾容量法测定;有机碳采用重铬酸钾容量法测定;土壤中的碱解氮、有效磷和速效钾分别用碱解扩散法、碳酸氢钠提取-钼锑抗比色法和乙酸铵提取-火焰光度法测定[25]。分别于试验第1、3、5、10、15、20、25、30、35、45、55、65、80、96天,测定试验的pH、氧化还原电位(Eh)和活性氧浓度(DO):pH动态监测采用pH计(梅特勒Seven2Go)测定;氧化还原电位采用梅特勒Seven2Go + ORP复合电极(梅特勒LE501)测定;活性氧浓度采用便携式溶解氧测量仪(HQ30d,美国哈希hach公司)测定。于水稻早稻分蘖盛期和收获期同等时期测定相应土壤还原性物质总量、活性还原性物质含量、还原性铁锰含量以及碱解氮、有效磷与速效钾含量:土壤还原物质总量采用硫酸铝浸提-重铬酸钾氧化法测定;土壤活性还原性物质含量采用高锰酸钾滴定法测定;土壤还原性亚铁、亚锰含量采用邻啡啰啉比色法与高碘酸钾比色法测定[25]

1.5 数据处理

作图和统计分析分别用Microsoft Office Excel 2016和SPSS 20(IBM公司,美国)专业版进行。

2 结果与分析 2.1 不同缓释过氧化钙对土壤还原物质的影响 2.1.1 对土壤还原性物质总量的影响

图 1可以看出,收获期T1、T6和T7处理的土壤还原性物质总量低于分蘖期,T2、T3、T4和T5处理高于分蘖期。分蘖期土壤还原性物质总量表现为缓释过氧化钙处理 > 过氧化钙粉末、颗粒处理,收获期土壤还原性物质总量过氧化钙粉末、颗粒处理 > 缓释过氧化钙处理,均与T1处理存在显著差异。从分蘖期至收获期,以T7处理还原性物质总量降幅最大,达到3.41 cmol/kg;T1处理降幅最小,为0.23 cmol/kg;T2、T3处理有所上升,增幅分别达到1.74 cmol/kg和1.86 cmol/kg。

(图中小写字母不同表示同一生育期不同处理间差异达P < 0.05显著水平;T1:不施过氧化钙;T2:过氧化钙粉末;T3:未包膜过氧化钙颗粒;T4:石蜡包膜的缓释过氧化钙;T5:聚乙烯包膜的缓释过氧化钙颗粒;T6:乙基纤维素包膜的缓释过氧化钙;T7:纳米有机膨润土包膜的缓释过氧化钙,下图同) 图 1 不同缓释过氧化钙处理下土壤还原性物质总量变化
2.1.2 对土壤活性还原性物质含量的影响

图 2为不同处理土壤中活性还原性物质含量,分蘖期至收获期除T3处理外均表现为降低的趋势。分蘖期土壤活性还原性物质含量以T1处理最高,T3与T5处理含量较低,均与T1处理存在显著差异;T2、T4、T6和T7处理较T1处理降低13.6%、15.2%、20.6%和5.4%,差异均不显著。收获期各处理活性还原性物质含量均显著低于T1处理;T7处理收获期土壤中活性还原性物质含量较分蘖期降低3.19 cmol/kg,降幅最大;T6处理次之,降幅达到1.79 cmol/kg。T3处理分蘖期至收获期的变化幅度最小,为0.10 cmol/kg。

图 2 不同缓释过氧化钙处理下土壤活性还原物质含量变化
2.1.3 对土壤还原性铁、锰含量的影响

潜育化稻田中Fe2+、Mn2+的含量直接反映土壤中的氧化还原状态。图 3为分蘖期与收获期不同处理土壤中还原性铁、锰含量。由图可知,分蘖期至收获期,还原性铁、锰的含量均呈下降趋势。分蘖期与收获期T3、T5与T6处理还原性铁含量均显著低于T1处理。分蘖期各处理Mn2+含量显著低于T1处理,收获期T5、T6及T7处理与T1处理无显著差异。分蘖期还原性铁含量以T6处理最低,收获期以T6与T7处理最低;分蘖期还原性锰含量以T2处理最低,收获期以T2、T3与T4处理最低。T6处理收获期还原性铁、锰含量均低于其他处理,与T5处理无显著差异。分蘖期至收获期,T7处理还原性铁含量降幅最大,达到4.15 cmol/kg;T6处理还原性锰含量降幅最大,达到0.074 cmol/kg;T2处理还原性铁、锰含量的变化幅度最小,收获期较分蘖期分别降低0.68 cmol/kg与0.048 cmol/kg。

图 3 不同缓释过氧化钙处理下土壤还原性铁、锰含量变化
2.2 不同缓释过氧化钙对土壤理化性质的影响 2.2.1 对土壤pH动态变化的影响

图 4为不同缓释过氧化钙处理对土壤pH的变化曲线,由图可知,各处理均表现出先上升后下降的趋势,最后pH达到7.0附近。施用过氧化钙各处理土壤pH全生育期均高于T1处理。在第1 ~ 10天左右,各处理pH均呈上升趋势,T2处理最高,T3处理次之。第20 ~ 65天,T4、T5、T6以及T7处理pH变化规律相似,达到最大值并趋于平缓。T1、T2与T3均呈下降趋势,明显低于其他处理。

图 4 不同缓释过氧化钙处理土壤pH的动态变化
2.2.2 对土壤氧化还原电位动态变化的影响

图 5可以看出,施用过氧化钙各处理土壤氧化还原电位均表现出先增加后降低的趋势。T1处理土壤中氧化还原电位在200.00 mV左右波动,T2处理在第5天左右达到峰值,之后均呈下降趋势。第15天,T3、T4、T5、T6以及T7处理土壤氧化还原电位达到峰值,第15 ~ 55天趋于平缓,且氧化还原电位大致表现为T6 > T4 > T7 > T3 > T5。T5处理土壤中氧化还原电位在第45天后表现为急剧下降,T3与T4处理在第55天后急剧下降,T6与T7处理在第55天后缓慢下降;T2、T3与T4处理最终保持在125.00 mV左右,T5、T6与T7处理最终保持在190.00 mV左右。在第10 ~ 55天,缓释过氧化钙处理的氧化还原电位平均较T1、T2处理高50.00 ~ 120.00 mV。

图 5 不同缓释过氧化钙处理土壤氧化还原电位动态变化
2.2.3 对土壤活性氧浓度动态变化的影响

图 6表示不同缓释过氧化钙处理土壤中活性氧浓度的动态变化,由图可知,各处理的土壤活性氧浓度均表现为先上升后下降的趋势。T1处理的土壤活性氧浓度在3.50 ~ 5.00 mg/L内波动,T2处理土壤活性氧浓度在第3天达到峰值,第5天开始降低,最终活性氧浓度保持在4.00 mg/L左右。T3处理活性氧浓度在第10天达到峰值,之后呈缓慢下降,到第35天急剧下降,最终趋于稳定。T4与T5处理活性氧浓度在第20天左右达到最大;T6与T7处理的溶解氧浓度后期表现为持续缓慢释放。第15 ~ 80天,施用过氧化钙各处理土壤活性氧浓度大致表现为:T6 > T7 > T4 > T5 > T3 > T2。

图 6 不同缓释过氧化钙处理土壤活性氧浓度动态变化
2.2.4 对土壤碱解氮含量的影响

不同处理分蘖期至收获期土壤中碱解氮含量变化如图 7所示。缓释过氧化钙处理土壤碱解氮含量分蘖期至收获期均表现为下降趋势。分蘖期中以T1处理碱解氮含量最低,T2处理碱解氮含量最高,各处理间无显著差异;碱解氮含量表现为过氧化钙粉末、颗粒 > 缓释过氧化钙 > 不施过氧化钙处理,缓释过氧化钙中以T6处理最低。收获期各处理间无显著差异,碱解氮含量基本一致。

图 7 不同缓释过氧化钙处理土壤碱解氮含量变化
2.2.5 对土壤有效磷含量的影响

图 8为不同缓释过氧化钙处理分蘖期与收获期土壤有效磷含量,可以看出,分蘖期土壤有效磷含量均低于土壤基础值,收获期土壤有效磷含量均高于分蘖期与基础值。分蘖期中以T2处理土壤有效磷含量最高,显著高于T1、T4和T6处理;缓释过氧化钙各处理之间无显著差异。收获期T6处理有效磷含量高于其他缓释过氧化钙处理,与T1处理存在显著差异。收获期以T1处理有效磷含量最低,较其他处理平均低25.0%,显著低于T3和T6处理。

图 8 不同缓释过氧化钙处理土壤有效磷含量变化
2.2.6 对土壤速效钾含量的影响

分蘖期至收获期不同处理土壤速效磷含量表现为升高趋势(图 9)。分蘖期土壤速效钾含量以T2处理最高,与T1处理存在显著差异,与其他过氧化钙处理间无显著差异;缓释过氧化钙处理中,T7处理的速效钾含量最高,T6处理最低。收获期T6处理的速效钾含量最高,与其他缓释过氧化钙处理无显著差异,显著高于T1、T2和T3处理。

图 9 不同缓释过氧化钙处理土壤速效钾含量变化
2.3 相关分析

表 1为不同统计量间相关系数,由表可知,分蘖期与收获期土壤pH、氧化还原电位以及活性氧浓度均与还原物质的含量呈负相关,还原物质含量之间呈正相关。分蘖期氧化还原电位与还原性铁含量存在显著负相关;还原性铁含量与还原物质含量以及活性还原性物质含量呈极显著正相关,还原性锰含量与活性还原性物质含量同样呈极显著正相关。分蘖期活性还原性物质含量与土壤氧化还原电位以及还原物质总量分别呈极显著负相关和正相关;还原性铁含量与还原物质含量以及活性还原物质含量存在显著正相关。活性氧浓度与分蘖期和收获期还原物质量含量呈负相关(还原性锰除外)。

表 1 统计量间相关系数
3 讨论

潜育性稻田土壤长期渍水,水土温度低,有害还原性物质累积,养分转化迟滞,水稻根系的生长和生理受到抑制,严重阻碍水稻高产[26]。缓释过氧化钙施入潜育化稻田后,通过逐步产生氢氧化钙、释放活性氧、释放热能而缓慢稳定地提高土壤pH、改善土壤缺氧环境及提高土壤氧化还原电位、提升土壤温度等,从而有效改良稻田土壤潜育环境[15]

根据过氧化钙粉末、颗粒及缓释过氧化钙的活性氧释放规律[24]与水稻移栽后全生育期土壤的活性氧浓度变化(图 6),粉末、颗粒过氧化钙前期的释氧强度大,分别在第3、10天活性氧浓度达到最大值7.42 mg/L和7.91 mg/L,后期则表现供氧严重不足;缓释过氧化钙活性氧释放时间要长于粉末与颗粒过氧化钙处理,整个生育期相对平缓,乙基纤维素包膜与有机膨润土包膜过氧化钙在前期活性氧稳定释放,后期释氧强度较前期更为强劲。

本研究与杨利等[14]和胡继杰等[27]研究结果一致,与不施过氧化钙处理(T1)相比,施用过氧化钙各处理均能降低土壤还原物质含量,提高土壤pH与氧化还原电位,表明潜育性稻田施用过氧化钙可有效改善土壤氧化还原状况等理化性质。各处理中以缓释过氧化钙对还原物质的消减、对土壤pH与氧化还原电位的提升效果最佳。分蘖期粉末、颗粒过氧化钙处理土壤还原物质含量均低于缓释过氧化钙处理,分蘖期至收获期以缓释过氧化钙处理土壤还原物质含量降幅最大,其土壤pH、氧化还原电位及活性氧浓度均在水稻生育后期达到峰值,高于水稻生育前期及相应时期的其他处理;这与粉末、颗粒过氧化钙前期供氧强度大,后期严重不足,而缓释过氧化钙前中期供氧平缓,后期更为强劲的供氧特性一致。分蘖期至收获期不施过氧化钙处理(T1)土壤中还原物质含量略有降低,土壤pH、氧化还原电位及活性氧浓度上下波动均可能与季节变换、土温变化及土壤微生物与酶新陈代谢[16, 28]有关,致使土壤潜育化程度改变[8]。分蘖期各处理还原性锰含量均显著低于不施过氧化钙处理(T1),平均低49.7%,这可能与还原性锰含量低且作用于潜育化初期有关[4]。综上,进一步验证表明缓释过氧化钙更能满足潜育化稻田水稻的生长发育与水稻生育期内有毒还原性物质的削减要求,减少有毒有害因子,有效降低了潜育化稻田水稻全生育期土壤还原物质含量。

本试验中,施用过氧化钙处理土壤速效养分含量均高于不施处理,分蘖期以粉末与颗粒过氧化钙处理较高,收获期以缓释过氧化钙处理较高。这与缓释过氧化钙的活性氧释放规律相符,与周金玲等[16]人研究结果一致。分蘖期至收获期,不同过氧化钙处理土壤碱解氮含量降低可能与土壤表层水受到pH、温度等因子的影响产生氨挥发有关;速效钾含量提高可能与缓释过氧化钙的施入使得部分非交换态钾转变为交换态钾有关[29]。部分潜育化稻田有效磷缺失是影响稻田生产力的一个重要因素[30],本试验中,缓释过氧化钙处理土壤有效磷含量较不施处理(T1)均有明显提高,有效改善这一影响因子。分蘖期至收获期土壤有效磷含量的上升则可能是因为酸性土壤中磷的释放主要表现为Fe-P的释放,施入过氧化钙后,分蘖期还原性降低,抑制Fe-P的水解释放,收获期土壤pH升高,导致有效磷含量增加[29]。林海波等[31]研究表明Fe2+与活性还原物质是还原物质中的重要组成部分,本试验中还原性铁含量与还原物质总量以及活性还原物质含量均存在显著正相关,与其结果相符。分蘖期还原性锰含量与还原物质含量的相关性要高于收获期,这可能与还原性锰含量低,易活化还原,作用于潜育化前期有关[4]

综上,乙基纤维素包膜与有机膨润土包膜过氧化钙在前期活性氧稳定释放,提高土壤pH与氧化还原电位,改善土壤环境,可促进水稻分蘖;后期释氧强度较前期更为强劲,有效提高土壤碱解氮、有效磷与速效钾含量,提高土壤养分,壮大水稻群体结构,从而提高产量。盆栽试验的结果有待进一步验证。

4 结论

本试验中,施用过氧化钙均对潜育化稻田具有改良效果,过氧化钙粉末与颗粒的释放较快,水稻生育前期便释氧完全,缓释过氧化钙较慢,更加适合水稻全生育期的土壤需氧特性。缓释过氧化钙处理还原物质总量、活性还原性物质含量和还原性铁、锰含量分蘖期较不施过氧化钙处理平均降低22.0%、17.5%、27.8%、47.4%,收获期较不施过氧化钙处理平均降低28.3%、29.3%、28.3%、26.3%;与过氧化钙颗粒处理相比,其土壤pH平均提高3.0%,土壤氧化还原电位与活性氧浓度平均提高1.4%和12.5%;其收获期碱解氮含量均较分蘖期平均降低17.5%,速效钾与有效磷含量平均提高37.3%和100%。本试验条件下,缓释过氧化钙处理中以乙基纤维素包膜效果更加合适,其次为纳米有机膨润土包膜。本研究结果,为缓释过氧化钙在实际大田中的应用效果研究提供理论依据与实践基础。

参考文献
[1]
龚子同, 张效朴, 韦启璠. 我国潜育性水稻土的形成、特性及增产潜力[J]. 中国农业科学, 1990, 23(1): 45-52 (0)
[2]
龚次元, 曾希柏, 肖时运, 等. 湖南省潜育性稻田氮钾肥料效应函数模式研究[J]. 植物营养与肥料学报, 1997, 3(3): 284-287 (0)
[3]
Pan S Z. Characterization of gleyzation of paddy soils in the middle reaches of the Yangtze River[J]. Pedosphere, 1996, 6(2): 111-119 (0)
[4]
潘淑贞. 不同潜育化土壤中还原物质的变化[J]. 土壤通报, 1996, 158-161 (0)
[5]
刘杰, 罗尊长, 肖小平, 等. 土壤调理剂对冷浸田土壤特性及水稻生长的影响[J]. 土壤, 2016, 48(3): 529-533 DOI:10.3724/SP.J.1011.2013.00810 (0)
[6]
刘杰, 罗尊长, 肖小平, 等. 不同栽培和灌溉方式对冷浸稻田还原性物质及水稻生长的影响[J]. 作物研究, 2014, 28(5): 451-454 (0)
[7]
钟帅.生物质炭对潜育性稻田水稻营养的影响[D].重庆: 西南大学, 2013. (0)
[8]
李大明, 余喜初, 柳开楼, 等. 工程排水和农业措施改良鄱阳湖区潜育化稻田的效果[J]. 植物营养与肥料学报, 2015, 21(3): 684-693 (0)
[9]
徐培智, 解开治, 刘光荣, 等. 冷浸田开沟排水技术规程[J]. 广东农业科学, 2012, 39(21): 91-92 (0)
[10]
王飞, 李清华, 林诚, 等. 冷浸田水旱轮作对作物生产及土壤特性的影响[J]. 应用生态学报, 2015, 26(5): 1469-1476 (0)
[11]
张赓, 李小坤, 鲁剑巍, 等. 不同措施对冷浸田土壤还原性物质含量及水稻产量的影响[J]. 中国农学通报, 2014, 30(27): 153-157 (0)
[12]
王成瑷, 张文香, 赫崇岩, 等. 过氧化钙种子包衣剂对直播水稻生育及产量的影响[J]. 现代化农业, 1993(7): 7-8 (0)
[13]
林海波.冷浸田主要还原性物质对水稻产量的影响[D].贵阳: 贵州大学, 2016. (0)
[14]
杨利, 姚其华, 范先鹏, 等. 鄂东南棕红壤丘陵区冷浸田施用过氧化钙效果[J]. 湖北农业科学, 1997, 37-39 (0)
[15]
余喜初, 李大明, 黄庆海, 等. 过氧化钙及硅钙肥改良潜育化稻田土壤的效果研究[J]. 植物营养与肥料学报, 2015, 21(1): 138-146 (0)
[16]
周金玲, 郑小东, 田应兵, 等. 氧化剂对潜育性稻田土壤微生物生物量及有效养分的影响[J]. 江苏农业科学, 2017, 45(14): 227-231 (0)
[17]
Westcott M P, Mikkelsen D S. The response of rice seedlings to O2 released from CaO2 in flooded soils[J]. Plant and Soil, 1983, 74(1): 31-39 DOI:10.1007/BF02178737 (0)
[18]
侯红乾, 冀建华, 刘秀梅, 等. 土壤改良剂对鄱阳湖区潜育性稻田的改良作用研究[J]. 土壤通报, 2016, 47(6): 1448-1454 (0)
[19]
董春华, 苏以荣, 罗尊长, 等.一种以过氧化钙为基质桐油为包膜的缓释氧化剂及制备方法: CN105860990A[P]. 2016-08-17. (0)
[20]
董春华, 苏以荣, 罗尊长, 等.一种以过氧化钙为基质石蜡为包膜的缓释氧化剂及制备方法: CN105802634A[P]. 2016-07-27. (0)
[21]
董春华, 苏以荣, 罗尊长, 等.一种以过氧化钙为基质聚乙烯为包膜的缓释氧化剂及制备方法: CN105860980A[P]. 2016-08-17. (0)
[22]
董春华, 罗尊长, 苏以荣, 等.一种以过氧化钙为基质乙基纤维素为包膜的缓释氧化剂及制备方法: CN 105925267A[P]. 2016-09-07. (0)
[23]
董春华, 罗尊长, 苏以荣, 等.一种以过氧化钙为基质纳米有机膨润土为包膜的缓释氧化剂及制备方法: CN 105907400A[P]. 2016-08-31. (0)
[24]
董春华.缓释过氧化钙的研制及其活性氧释放规律研究[D].长沙: 中国科学院亚热带农业生态研究所 & 湖南省农业科学院, 2016. (0)
[25]
鲁如坤. 土壤农业化学分析方法[M]. 中国农业科技出版社, 北京, 2000 (0)
[26]
董春华, 罗尊长, 苏以荣, 等.一种以过氧化钙为基质环氧树脂为包膜的缓释氧化剂及制备方法: CN 105885861A[P]. 2016-08-24. (0)
[27]
胡继杰, 朱练峰, 胡志华, 等. 土壤增氧方式对其氮素转化和水稻氮素利用及产量的影响[J]. 农业工程学报, 2017, 33(1): 167-174 (0)
[28]
袁颖红, 张文锋, 周际海, 等. 改良剂对旱地红壤活性有机碳及土壤酶活性的影响[J]. 土壤, 2017, 49(5): 909-918 (0)
[29]
沈其荣. 土壤肥料学通论[M]. 高等教育出版社, 北京, 2001 (0)
[30]
柴娟娟, 廖敏, 徐培智, 等. 我国主要低产水稻冷浸田养分障碍因子特征分析[J]. 水土保持学报, 2012, 26(2): 284-288 (0)
[31]
林海波, 朱青, 陈正刚, 等. 冷浸田亚铁对水稻毒害作用及改良措施[J]. 山地农业生物学报, 2015, 34(2): 82-86 (0)
Effects of Different Release Rates of Calcium Peroxide on Physicochemical Properties of Paddy Soil Under Simulated Gley Environment
HU Kexin1,2 , DONG Chunhua2 , LUO Zunchang1,2 , XIE Yi1,2 , ZHOU Xuan2 , ZHOU Mengyu3 , HONG Xi2 , WANG Lingling1,2     
1. Long Ping Branch, Graduate School of Hunan University, Changsha 410125, China;
2. Hunan Institute of Soil and Fertilizer, Changsha 410125, China;
3. Agricultural Comprehensive Service Station of Dahu Town, Liuyang, Hunan 410305, China
Abstract: The environmental simulation experiment of gleyed paddy field was carried out in net lab in order to explore the effect of slow-release calcium peroxide on the improvement of gleying paddy soil. Four kinds of slow-release calcium peroxide were selected from 10 kinds of coated slow-release calcium peroxide. The total content of reducing substances in the soil of gley fertile paddy field was investigated in rice tillering and harvest stages, and the changes of active reductive substances, reductive ferromanganese, effective nutrients and the dynamic changes of soil pH, redox potential and reactive oxygen concentration during the whole growth period of rice were also studied. The results showed that calcium peroxide could reduce the contents of soil reduction substances in the sampling period, and could improve the contents of available nutrients and soil pH, redox potential and reactive oxygen concentration in soil. Slow-release calcium peroxide had the best effect, followed by calcium peroxide granules and powders. The effect of ethyl cellulose coating was the best in the treatment of slow-release calcium peroxide, compared with the treatment of ethyl fiber coated calcium peroxide and calcium peroxide powder, the total content of reducing substance, the contents of active reductive substance, reductive iron and manganese were reduced by 22.9% and 36.0%, 20.6%and 13.6%, 37.6% and 29.0%, 38.7% and 56.9% in tillering stage respectively, decreased by 32.4% and 20.0%, 32.7% and 19.5%, 34.3% and 7.9%, 25.5% and 38.6% in harvest stage respectively; soil pH increased by 13.5% and 8.3% respectively, soil redox potential and reactive oxygen concentration increased by 43.0% and 2.2%, 58.6% and 13.4% respectively. The above results can provide theoretical and practical basis for the improvement of gleying paddy fields by slow-release calcium peroxide.
Key words: Slow-release calcium peroxide    Gley environment simulate    Soil physicochemical properties    Improved effect