查询字段 检索词
  土壤  2022, Vol. 54 Issue (1): 206-210  DOI: 10.13758/j.cnki.tr.2022.01.027
0

引用本文  

张梓良, 林健, 冬明月, 董金龙, 段增强. 苏南某区污染耕地农产品镉汞状况调查及健康风险评价. 土壤, 2022, 54(1): 206-210.
ZHANG Ziliang, LIN Jian, DONG Mingyue, DONG Jinlong, DUAN Zengqiang. Survey of Cadmium and Mercury Pollution and Assessment of Health Risk of Crops in Polluted Farmland in Southern Jiangsu. Soils, 2022, 54(1): 206-210.

基金项目

国家重点研发计划项目(2017YFD0202002)和中国科学院美丽中国科技先导专项(XDA23020401)资助

通讯作者

段增强, E-mail: zqduan@issas.ac.cn

作者简介

张梓良(1997-), 男, 湖北黄冈人, 硕士研究生, 主要从事设施农业和重金属污染农田相关研究。E-mail: zhangziliang@issas.ac.cn
苏南某区污染耕地农产品镉汞状况调查及健康风险评价
张梓良1,2 , 林健1,2 , 冬明月3 , 董金龙1 , 段增强1     
1. 土壤与农业可持续发展国家重点实验室(中国科学院南京土壤研究所), 南京 210008;
2. 中国科学院大学, 北京 100049;
3. 仪征市农业环境与能源指导站, 江苏扬州 211400
摘要:于2019年和2020年在苏南某区污染耕地采集了302份水稻和97份蔬菜样本,评估了农作物可食部分镉(Cd)和汞(Hg)的健康风险。结果表明:水稻籽粒中Cd和Hg含量均高于蔬菜,水稻籽粒和蔬菜Cd含量分别为59.5和50.7 μg/kg,超标率为4.6%和4.1%;水稻和蔬菜Hg含量分别为4.7和0.7 μg/kg,其中仅水稻籽粒Hg超标,超标率为3.3%;水稻和蔬菜Cd和Hg日摄入量分别为0.371和0.239 μg/(kg·d);整体危害指数为0.680(< 1)。食用研究区域水稻和蔬菜的重金属健康风险较低。在整个研究区采样和同点位不同农作物采样两个尺度下,粳稻和根类蔬菜Cd含量均分别显著低于籼稻和叶类蔬菜,但不同水稻和蔬菜品种间Hg含量无显著差异。因此,本研究推荐种植和食用粳稻、根类蔬菜,从而降低污染耕地农产品Cd和Hg对人体健康的潜在风险。
关键词重金属污染    健康风险    籼稻    粳稻    蔬菜    

重金属主要来源于采矿、燃烧化石燃料、农业活动等人类活动。由于重金属元素可被植物根际活化吸收,并随食物链在生态系统中富集传递至人体,由此引发健康问题如导致神经和内脏疾病等,越来越受到人们的关注与重视。日常饮食中食物摄入是除职业暴露途径外的普通人群接触重金属的主要途径[1]。其中水稻和蔬菜是日常饮食的主要构成,而镉(Cd)和汞(Hg)又是威胁人类健康的两种主要重金属[2-3],因此评估这两种作物重金属污染状况及对人体的健康风险具有至关重要的意义。

Cd容易被作物尤其是水稻等吸收累积在籽粒中,通过食用的方式迁移至人体并不断累积而导致严重的疾病,如慢性肾脏和心血管疾病[4],比较知名的Cd污染事件是在日本发生的痛痛病。对于我国居民Cd的暴露主要通过谷物和蔬菜的食用[5-6]。我国主要水稻产区糙米Cd平均含量为120 μg/kg,相对偏高[7];国内5个典型蔬菜产区的Cd平均含量低于35 μg/kg[8],较食用水稻的风险偏低。在我国境内,Cd污染风险最大的地区位于华南,比如湖南(342 μg/kg)[9]

Hg尤其是甲基汞对人体神经系统的损害十分严重[10]。研究表明,食用水稻是Hg污染区人群接触甲基汞的主要途径[11]。南亚与印度、中国、孟加拉国和印度尼西亚通过水稻种植导致的Hg排放占全球总Hg排放的75%[12]。中国15个主要粮食主产省份的稻谷Hg含量在1.5~25.4 μg/kg[13],高于全球平均水平。Zhong等[14]通过对220篇文献的总结,发现我国蔬菜的平均Hg含量为8 μg/kg,蔬菜的Hg累积能力总体低于水稻。

本研究以前期调查划定的中轻度重金属污染耕地为研究对象,其主要重金属污染物是Cd和Hg,经多年环保督查和污染源管控,该研究区及其周边重点污染源目前已基本切断,且地表水和农业投入品监测结果也支持该区域无新增污染的结论。基于此,本研究评估了目前该区域农产品中Cd和Hg在当地主要作物中的污染状况,比较了不同种类和品种(水稻和蔬菜)的健康风险,以为污染耕地的安全利用和当地产农产品的安全食用提供科学建议。

1 材料与方法 1.1 样品采集与分析

调查于2019年和2020年收获季节于苏南某区污染农田上进行,采用五点采样法,每2 000 m2采集500 g水稻籽粒样品、1 000 g蔬菜可食部分样品,共采集了302份稻谷样品和97份蔬菜样品。水稻样品分为粳稻(245)和籼稻(57),而蔬菜样品分为叶类蔬菜(77)和根类蔬菜(20)。叶类蔬菜包括韭菜(4)、芦蒿(15)、白菜(2)、小白菜(45)、菜心(2)、茼蒿(4)、香菜(1)、菊花脑(2)和空心菜(2),而根类蔬菜为萝卜(20)。采样过程中发现部分点位方圆50 m内同时存在两种水稻或蔬菜,按上述采样方法同时采集该点位上的两种农产品,共采集8对籼稻–粳稻和16对叶类–根类蔬菜样品。

水稻样品置于干净的室内干燥,并用砻谷机去壳得到糙米。糙米首先用自来水冲洗一次,再用去离子水清洗两次。蔬菜样品于采样当天处理,在清理掉表面的明显泥土后,记录蔬菜样品的鲜重,并按糙米清洗步骤清洗干净。所有洗净的样品均在45℃下烘干至恒重,对于蔬菜样品,烘干后记录干重,以计算含水量。用粉碎机将糙米和蔬菜样品磨成粉末用于消解,水稻重金属含量以干基表示,蔬菜重金属含量以鲜基表示。

植株重金属含量的测定参照GB 5009.268—2016[15]进行。称取谷物或蔬菜样品(0.5 g),放置于消解罐中,添加5 ml HNO3(69%)和1 ml H2O2(30%),消解液经定容后,元素As、Cd、Cr和Pb的测定采用ICP-MS,元素Hg的测定采用AFS。标准物质GBW100348和GBW10014用于质量控制,5种重金属元素的回收率均在90% ~ 110%,符合质控要求。

1.2 数据分析

试验数据采用R软件进行方差分析和T检验,采用Duncan新复极差法(SSR)进行多重比较,显著性水平为0.05。当重金属含量低于检测(LOD)的限值时用1/2检出限代替[16],Cd的检出限为0.90 μg/kg、Hg为0.16 μg/kg、As、Pb和Cr分别为0.39、0.39和10.8 μg/kg。

采用美国环境保护署危害指数(HQ)评价方法评估食用农作物带来的重金属摄入对人体的潜在健康风险[17],其计算公式为:

$ {\text{EDI}} = \frac{1}{{{\text{BW}}}} \times {\text{CC}} \times {{\text{I}}_{\text{R}}} $ (1)

式中:EDI为重金属日摄入量(μg/(kg·d));BW为成人平均体重,设定为55.9 kg[18];CC为农作物重金属含量(μg/kg);IR为摄入量,水稻为323.0 g/d,蔬菜为260.8 g/d[19]。摄入某种重金属对人体的危害程度用HQ表示:

$ {\text{HQ}} = \frac{{{\text{EDI}}}}{{{{\text{R}}_{\text{f}}}{\text{D}}}} $ (2)

整体危害指数(THQ)为Cd和Hg的总和,THQ > 1表示食用该种农产品对人体有可能产生健康风险。

$ {\text{THQ}} = \sum\limits_{i = 1}^n {{\text{H}}{{\text{Q}}_{\text{i}}}} $ (3)

式中:Cd和Hg的RfD值为1.0和0.3 μg/(kg·d) [20]

2 结果与讨论

水稻籽粒和蔬菜中5种重金属的含量测定结果表明,重金属Cd、Hg含量较高,有超标和食用安全风险。但As、Cr和Pb的含量超标情况相对较轻,安全风险极低,以下对这3种重金属的结果不再具体分析。

2.1 谷物和蔬菜中的镉

在调查区,水稻籽粒的Cd含量范围为5.4 ~ 801.0 μg/kg,平均值为59.5 μg/kg,中值为32.4 μg/kg(表 1)。根据食品安全国家标准(GB2762—2017)[21],调查区4.6% 的水稻样品超出限值,超标率高于苏南地区的调查结果(0%)[18],但低于珠江三角洲的29%[22]。超标水稻样品中,籼稻和粳稻的超标率分别为10.5% 和3.3%,其中值分别为79.4和25.9 μg/kg。籼稻较粳稻超标率和中值更高,表明籼稻更易吸收和累积Cd。从同一地点同时采集两个品种水稻样品时,籼稻Cd含量(86.8 μg/kg)同样高于粳稻(45.0 μg/kg),进一步支持了该结果,且与其他研究的结果一致[23-24]。根据现场调查发现,籼稻根系较大,生长速度较快,能够从土壤中吸收更多的Cd,这可能是籼稻较粳稻累积更多Cd的原因。

表 1 水稻和蔬菜可食部分Cd和Hg含量(μg/kg)及超标率(%)

与水稻相比,调查区蔬菜Cd含量相对较低,平均含量50.7 μg/kg(表 1),低于其他研究结果[8, 25]。叶类和根类蔬菜Cd含量范围分别为4.8 ~ 345.0 μg/kg和1.7 ~ 27.1 μg/kg。与根类蔬菜相比,叶类蔬菜的食用部分积累的Cd较多,叶类蔬菜的超标率比根类蔬菜(表 1)高5.2%。根类蔬菜平均值和中值分别低于叶类蔬菜82.7% 和71.4%。在同一点位采集的叶类和根类蔬菜,也印证了叶类蔬菜Cd累积较多。有研究从山东、江苏和云南采集叶类和根类蔬菜样品进行分析,其Cd的超标率分别为8.0% 和0.6%[8];从孟加拉市场采集的叶类蔬菜样品Cd含量为31 μg/kg,较非叶类蔬菜(7.6 μg/kg)高75.5%[26],本研究结果与之相同。叶类蔬菜Cd累积较多,可能是较大的叶片组织导致较高的蒸腾作用,从而促进植株根部Cd向叶片转移,进而促进叶片Cd的累积[27]

2.2 谷物和蔬菜中的汞

本研究区水稻籽粒Hg含量为0.1 ~ 39.0 μg/kg,中值为3.1 μg/kg,平均值为4.7 μg/kg(表 1),对比1980—2013年间51篇文章中总结的从40个无污染点位采集的糙米样品Hg含量平均值8.2 μg/kg,含量范围1.0 ~ 45 μg/kg [28],本研究区Hg污染水平较低。相比之下,贵州Hg污染矿区的水稻Hg含量均高于食品安全国家标准中的20 μg/kg[29],较本研究区存在更高风险。

此外,水稻籽粒Hg的超标率大于蔬菜的超标率。水稻总的超标率为3.3%,其中籼稻为8.8%,粳稻为2.0%,而蔬菜样品均未超过最大限值(表 1)。尽管籼稻Hg含量的平均值和范围均高于粳稻,但无论样本是否来自同一点位(表 1表 2),两个水稻品种之间并没有显著差异,这一结果与Han等[30]的结果一致。有研究表明,叶类蔬菜Hg含量高于根类蔬菜[31-32],本研究在两种尺度下的蔬菜采样结果表现出同样趋势。

表 2 同一点位采集的不同品种水稻和不同类型蔬菜重金属含量比较
2.3 作物的健康风险评估

研究区农作物平均膳食Cd摄入量(0.58 μg/(kg·d))与全国的摄入量0.53 μg/(kg·d)相近(表 3)[6]。稻谷和蔬菜THQ都低于1,表明这些作物的食用风险较低。稻谷THQ大于蔬菜,表明食用水稻的健康风险大于蔬菜。因此,与蔬菜相比,需要更加注意当地水稻的摄入,以降低重金属摄入。此外,这两种作物的重金属HQ值均为Cd > Hg,即食用两种作物具有的健康风险均为Cd高于Hg,故重金属类型中,需要加强对Cd污染的管控。

表 3 食用当地农作物的Cd和Hg潜在风险

未来研究需进一步明确具体水稻品种和蔬菜品种之间重金属积累差异的根本机制,并可适当增加其他农作物,如水果和小麦等谷物的健康风险评估,以全面评估研究区域农产品的重金属污染程度和健康风险。

3 结论

研究区Cd和Hg污染程度相对较高,且Cd污染程度高于Hg。采集的农作物样品中只有少数水稻和蔬菜样品超过了标准限值。因此,食用这两种农作物的健康风险总体较低。籼稻和粳稻相比,籼稻更易累积Cd和Hg;而叶类蔬菜中的Cd含量高于根类蔬菜,但对Hg的累积并不显著。研究推荐当地居民在种植和食用水稻和蔬菜时优先选择粳稻和根类蔬菜,以降低Cd和Hg摄入对人体的潜在健康风险。

参考文献
[1]
Roy M, McDonald L M. Metal uptake in plants and health risk assessments in metal-contaminated smelter soils[J]. Land Degradation&Development, 2015, 26(8): 785-792 (0)
[2]
Feng X B, Qiu G L. Mercury pollution in Guizhou, Southwestern China-An overview[J]. Science of the Total Environment, 2008, 400(1/2/3): 227-237 (0)
[3]
Zhao F J, Ma Y B, Zhu Y G, et al. Soil contamination in China: Current status and mitigation strategies[J]. Environmental Science&Technology, 2015, 49(2): 750-759 (0)
[4]
Riederer A M, Belova A, George B J, et al. Urinary cadmium in the 1999-2008 US national health and nutrition examination survey (NHANES)[J]. Environmental Science&Technology, 2013, 47(2): 1137-1147 (0)
[5]
Chen H P, Yang X P, Wang P, et al. Dietary cadmium intake from rice and vegetables and potential health risk: A case study in Xiangtan, Southern China[J]. Science of the Total Environment, 2018, 639: 271-277 DOI:10.1016/j.scitotenv.2018.05.050 (0)
[6]
Song Y, Wang Y, Mao W F, et al. Dietary cadmium exposure assessment among the Chinese population[J]. PLoS One, 2017, 12(5): e0177978 DOI:10.1371/journal.pone.0177978 (0)
[7]
Mu T T, Wu T Z, Zhou T, et al. Geographical variation in arsenic, cadmium, and lead of soils and rice in the major rice producing regions of China[J]. Science of the Total Environment, 2019, 677: 373-381 DOI:10.1016/j.scitotenv.2019.04.337 (0)
[8]
Hu W Y, Huang B, Borggaard O K, et al. Soil threshold values for cadmium based on paired soil-vegetable content analyses of greenhouse vegetable production systems in China: Implications for safe food production[J]. Environmental Pollution, 2018, 241: 922-929 DOI:10.1016/j.envpol.2018.06.034 (0)
[9]
Chen H P, Tang Z, Wang P, et al. Geographical variations of cadmium and arsenic concentrations and arsenic speciation in Chinese rice[J]. Environmental Pollution, 2018, 238: 482-490 DOI:10.1016/j.envpol.2018.03.048 (0)
[10]
Karagas M R, Choi A L, Oken E, et al. Evidence on the human health effects of low-level methylmercury exposure[J]. Environmental Health Perspectives, 2012, 120(6): 799-806 DOI:10.1289/ehp.1104494 (0)
[11]
Li P, Feng X B, Yuan X B, et al. Rice consumption contributes to low level methylmercury exposure in Southern China[J]. Environment International, 2012, 49: 18-23 DOI:10.1016/j.envint.2012.08.006 (0)
[12]
Liu M D, Zhang Q R, Cheng M H, et al. Rice life cycle-based global mercury biotransport and human methylmercury exposure[J]. Nature Communications, 2019, 10: 5164 DOI:10.1038/s41467-019-13221-2 (0)
[13]
Zhang H X, Wang D M, Zhang J L, et al. Total mercury in milled rice and brown rice from China and health risk evaluation[J]. Food Additives&Contaminants: Part B, 2014, 7(2): 141-146 (0)
[14]
Zhong T Y, Xue D W, Zhao L M, et al. Concentration of heavy metals in vegetables and potential health risk assessment in China[J]. Environmental Geochemistry and Health, 2018, 40(1): 313-322 DOI:10.1007/s10653-017-9909-6 (0)
[15]
中华人民共和国国家卫生与计划生育委员会, 国家食品药品监督管理总局. GB 5009.268-2016食品安全国家标准食品中多元素的测定[S]. 北京: 中国标准出版社, 2016. (0)
[16]
WHO. GEMS/Food-EURO workshop on reliable evaluation of low-level contamination of food: Report on a workshop in the frame of GEMS/Food-Euro, Kulmbach, Federal Republic of Germany 3-5Maych 1994[R]. 1994. (0)
[17]
Means B. Risk assessment guidance for superfund. Volume l. Human health evaluation manual (Part A), Interim report (Final)[R]. 1989. (0)
[18]
Cao H B, Chen J J, Zhang J, et al. Heavy metals in rice and garden vegetables and their potential health risks to inhabitants in the vicinity of an industrial zone in Jiangsu, China[J]. Journal of Environmental Sciences, 2010, 22(11): 1792-1799 DOI:10.1016/S1001-0742(09)60321-1 (0)
[19]
国家统计局. 中国统计年鉴2020[M]. 中国统计出版社, 北京, 2020 (0)
[20]
Wang H X, Li X M, Chen Y, et al. Geochemical behavior and potential health risk of heavy metals in basalt-derived agricultural soil and crops: A case study from Xuyi County, Eastern China[J]. Science of the Total Environment, 2020, 729: 139058 DOI:10.1016/j.scitotenv.2020.139058 (0)
[21]
中华人民共和国国家卫生与计划生育委员会, 国家食品药品监督管理总局. GB2762-2017食品安全国家标准食品中污染物限量[S]. 北京: 中国标准出版社, 2017. (0)
[22]
Zheng S N, Wang Q, Yuan Y Z, et al. Human health risk assessment of heavy metals in soil and food crops in the Pearl River Delta urban agglomeration of China[J]. Food Chemistry, 2020, 316: 126213 DOI:10.1016/j.foodchem.2020.126213 (0)
[23]
Uraguchi S, Fujiwara T. Cadmium transport and tolerance in rice: Perspectives for reducing grain cadmium accumulation[J]. Rice, 2012, 5(1): 5 DOI:10.1186/1939-8433-5-5 (0)
[24]
Sun L, Xu X X, Jiang Y R, et al. Genetic diversity, rather than cultivar type, determines relative grain Cd accumulation in hybrid rice[J]. Frontiers in Plant Science, 2016, 7: 1407 (0)
[25]
Li Q S, Chen Y, Fu H B, et al. Health risk of heavy metals in food crops grown on reclaimed tidal flat soil in the Pearl River Estuary, China[J]. Journal of Hazardous Materials, 2012, 227/228: 148-154 DOI:10.1016/j.jhazmat.2012.05.023 (0)
[26]
Al-Rmalli S W, Jenkins R O, Haris P I. Dietary intake of cadmium from Bangladeshi foods[J]. Journal of Food Science, 2012, 77(1): T26-T33 DOI:10.1111/j.1750-3841.2011.02467.x (0)
[27]
Gan Y D, Wang L H, Yang G Q, et al. Multiple factors impact the contents of heavy metals in vegetables in high natural background area of China[J]. Chemosphere, 2017, 184: 1388-1395 DOI:10.1016/j.chemosphere.2017.06.072 (0)
[28]
Rothenberg S E, Windham-Myers L, Creswell J E. Rice methylmercury exposure and mitigation: A comprehensive review[J]. Environmental Research, 2014, 133: 407-423 (0)
[29]
Feng X B, Li P, Qiu G L, et al. Human exposure to methylmercury through rice intake in mercury mining areas, Guizhou Province, China[J]. Environmental Science&Technology, 2008, 42(1): 326-332 (0)
[30]
Han J L, Chen Z, Pang J, et al. Health risk assessment of inorganic mercury and methylmercury via rice consumption in the urban city of Guiyang, southwest China[J]. International Journal of Environmental Research and Public Health, 2019, 16(2): E216 DOI:10.3390/ijerph16020216 (0)
[31]
Xu L, Lu A X, Wang J H, et al. Accumulation status, sources and phytoavailability of metals in greenhouse vegetable production systems in Beijing, China[J]. Ecotoxicology and Environmental Safety, 2015, 122: 214-220 DOI:10.1016/j.ecoenv.2015.07.025 (0)
[32]
Hu W Y, Huang B, Tian K, et al. Heavy metals in intensive greenhouse vegetable production systems along Yellow Sea of China: Levels, transfer and health risk[J]. Chemosphere, 2017, 167: 82-90 DOI:10.1016/j.chemosphere.2016.09.122 (0)
Survey of Cadmium and Mercury Pollution and Assessment of Health Risk of Crops in Polluted Farmland in Southern Jiangsu
ZHANG Ziliang1,2 , LIN Jian1,2 , DONG Mingyue3 , DONG Jinlong1 , DUAN Zengqiang1     
1. State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China;
2. University of Chinese Academy of Sciences, Beijing 100049, China;
3. Agricultural Environment and Energy Guidance Station of Yizheng, Yangzhou, Jiangsu 211400, China
Abstract: In this study, 302 samples of rice grains and 97 samples of vegetables in the farmlands in Southern Jiangsu were collected in 2019 and 2020 and the health risks of cadmium (Cd) and mercury (Hg) in the edible portions of the plants were evaluated. The results showed that Cd and Hg concentrations in rice grains were greater than those in vegetables. The mean concentrations of Cd in rice grains and vegetables were 59.5 and 50.7 μg/kg, respectively, and 4.6% and 4.1% exceeding the national standards of China. The mean concentrations of Hg were 4.7 and 0.7 μg/kg, respectively, and 3.3% and 0% exceeding the national standards of China. The estimated daily intake (EDI) of Cd and Hg in rice grains and vegetables were 0.371 and 0.239 μg/kg, and the total hazard quotient (THQ) of rice grains and vegetables was 0.680 (lower than 1), indicating that the health risk of local crops was low. The accumulation differences of Cd and Hg in edible portions of different crop cultivars were further compared, Japonica rice and root vegetables accumulated less Cd in edible portions when compared to Indica rice and leaf vegetables, respectively. Cultivating and consuming more grains from Japonica rice and root vegetables are recommended in order to decrease the potential health risk from Cd and Hg pollution and thus to alleviate the health risk from local crops.
Key words: Heavy metal contamination    Health risk    Indica rice    Japonica rice    Vegetable